DOI QR코드

DOI QR Code

Optical and Thermal Characteristics of Zr-O Solar Selective Coatings

Lee, Kil-Dong

  • Published : 20091000

Abstract

Zr-O (Zr-$ZrO_2$) cermet solar selective coatings with a double cermet layer film structure on Al-coated glass substrates for solar collectors used at in high temperatures were prepared by using direct-current magnetron sputtering technology. The typical film structure from the surface to the bottom substrate was an $Al_2O_3$ anti-reflection layer on a double Zr-O cermet layer on an Al-metal infrared reflection layer. The deposited Zr-O cermet solar selective coatings had a solar absorptance of $\alpha$ = 0.94 – 0.96 and a thermal emittance of $\epsilon$ = 0.07 – 010 (100 $^{\circ}C$), depending on the sputtering conditions. The absorption layers of the Zr-O cermets coatings on glass and silicon substrates were identified as being amorphous by using X-ray diffraction. Surface roughness measurements of coating layers by using atomic force microscopy showed that the cermet films were very smooth and that their root-mean-square roughness (rms) was approximately 0.1 nm. The composition of the cermet coatings was determined by using X-ray photoelectron spectroscopy. A chemical shift of the photoelectron binding energy occurred due to a change in the structure of the deposited Zr-O cermet coating with increasing oxygen flow rate. The results of the thermal stability test for the thermal characteristics analysis showed that solar selective coating of the Zr-O cermet was stable at temperatures under 350 $^{\circ}C$.

Keywords

References

  1. Z. Hamid, A. Aal and P. Schmuki, Surf. Interface Anal. 40, 1493 (2008) https://doi.org/10.1002/sia.2950
  2. J. Spitz, T. V. Danh and A. Aubert, Sol. Energy Mater. 1, 189 (1979) https://doi.org/10.1016/0165-1633(79)90037-6
  3. H. Tabor, Bull. Res. Council Israel 5A, 119 (1956)
  4. V. Moise, R. Cloots and A. Rulmont, Int. J. Inorg. Mater. 3, 1323 (2001) https://doi.org/10.1016/S1466-6049(01)00154-4
  5. Y. Z. Cao, J. F. Tian and X. F. Hu, Thin Solid Films 365, 49 (2000) https://doi.org/10.1016/S0040-6090(99)01095-0
  6. C. Nunes, V. Teixeira and M. Collares-Pereira, Vacuum 67, 623 (2002) https://doi.org/10.1016/S0042-207X(02)00263-4
  7. V. Teixeira, U. E. Sousa and M. F. Costa, Thin Solid Films 392, 320 (2002)
  8. A. Avila, G. E. Barrera, C. L. Huerta and A. S. Muhl, Sol. Energy Mater. Sol. Cells 82, 267 (2004)
  9. G. Katumba, G. Makiwa, T. R. Baisitse, L. Olumekor, A. Forbes and E. Wackelgard, Phys. Stat. Sol. C 5, 549 (2008) https://doi.org/10.1002/pssc.200776823
  10. Q. C. Zhang, Recent Res. Devel. Vacuum Sci & Tech. 1, 135 (1999)
  11. Q. C. Zhang, Y. Yin and D. R. Mills, Sol. Energy Mater. & Sol. Cells 40, 43 (1996) https://doi.org/10.1016/0927-0248(95)00078-X
  12. Q. C. Zhang, J. Phys. D: Appl. Phys. 34, 3113 (2001) https://doi.org/10.1088/0022-3727/34/21/303
  13. Q. C. Zhang, Sol. Energy Mater. & Sol. Cells 62, 63 (2000) https://doi.org/10.1016/S0927-0248(99)00136-1
  14. Q. C. Zhang, J. Vac. Sci. Technol. A 15, 2842 (1997) https://doi.org/10.1116/1.580837
  15. Q. C. Zhang, J. Phys. D: Appl. Phys. 31, 355 (1998) https://doi.org/10.1088/0022-3727/31/4/003
  16. E. Wackelgard and G. Hultmark, Sol. Energy Mater. & Sol. Cells. 54, 165 (1998) https://doi.org/10.1016/S0927-0248(98)00067-1
  17. V. Teixeira, E. Sousa, M. F. Costa, C. Nunes, L. Rosa, M. J. Carvalho, M. Collares-Pereira, E. Roman and J. Gago, Thin Solid Films 392, 320 (2001) https://doi.org/10.1016/S0040-6090(01)01051-3
  18. Q. C. Zhang, M. S. Hadavi, K. D. Lee and Y. G. Shen, J. Phys. D: Appl. Phys. 36, 723 (2003) https://doi.org/10.1088/0022-3727/36/6/315
  19. J. A. Duffie and W.A. Beckman, Solar Engineering of Thermal Processes (Wiley, New York, 1980)
  20. K. D. Lee, J. Korean Phys. Soc. 49, 189 (2006)
  21. Q. Guo and R. W. Joyner, Appl. Surf. Sci. 375, 144 (1999)
  22. K. D. Lee, W. C. Jung and J. K. Kim, Sol. Energy Mater. Sol. Cells. 62, 63 (2000) https://doi.org/10.1016/S0927-0248(99)00136-1
  23. G. Zajac, G. B. Smith and A. Ignatiev, J. Appl. Phys. 51, 5544 (1980) https://doi.org/10.1063/1.327475
  24. K. D. Lee, J. Korean Phys. Soc. 51, 135 (2007) https://doi.org/10.3938/jkps.51.135
  25. H. Schellinger, M. Lazarov, H. Klank and R. Sizmann, in Optical Materials Technolpgy for Energy Efficiency and Solar Energy Conversion X11, edited C. M. Lampert, Proc. SPIE 2017, 345 (1993)

Cited by

  1. 직류 마그네트론 스퍼터법에 의한 AlNO 복층박막의 제조와 특성 vol.27, pp.9, 2009, https://doi.org/10.4313/jkem.2014.27.9.589