ITS2 Ribosomal DNA Sequence Variation of the Bumblebee, Bombus ardens (Hymenoptera: Apidae)

Oh, Hyung-Keun;Yoon, Hyung-Joo;Kim, Min-Jee;Jeong, Hyung-Uk;Kim, Seong-Ryul;Hwang, Jae-Sam;Bae, Chang-Hwan;Kim, Ik-Soo

  • Published : 20090800

Abstract

The bumblebee species, Bombus, is an invaluable natural resource for greenhouse pollination. Low levels of genetic variation of Bombus ardens have been reported in a previous mitochondrial (mt) gene study. In this study, we sequenced the complete internal transcribed spacer 2 (ITS2) of the nuclear rDNA obtained from 100 B. ardens individuals collected from several Korean localities, in an effort to assess its usefulness in characterizing the genetic diversity and relationships among populations of B. ardens. The ITS2 sequences of B. ardens were shown to be longest among known insects, ranging in size from 1,971 - 1,984 bp. The sequences harbor four duplicated repeats-~27 bp repeats, -~20 bp repeats, -~33 bp repeats, and -~34 bp repeats-which have never before been reported in other insect ITS2 rDNA. The maximum sequence divergence of 1.01% among 96 sequence types confirmed the applicability of this molecule to the study of intraspecific variation, revealing higher sequence variation as compared to the previously studied mt COI gene. Overall, a very high per generation migration ratio (Nm = 5.83 -~ infinite) and a very low level of genetic fixation ($F_{ST}$ =0 - 0.08) were noted to exist among populations of B. ardens. The high estimation of gene flow among most populations-in particular, between the remote island Ulleungdo and several inland populations-suggest that historical events may be more responsible for the contemporary population structure of B. ardens. The finding of the lowest genetic diversity ($\pi$) in the population on Ulleungdo Island ($\pi$ = 0.007434) may be reflective of a relatively small population size and the geographical isolation of the population as compared with other inland populations.

Keywords

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans. Autom. Contr. 19: 716−723 https://doi.org/10.1109/TAC.1974.1100705
  2. Alam MT, Bora H, Das MK and Sharma YD (2008) The type and mysorensis forms of the Anopheles stephensi (Diptera: Culicidae) in India exhibit identical ribosomal DNA ITS2 and domain-3 sequences. Parasitol. Res. 103: 75−80 https://doi.org/10.1007/s00436-008-0930-7
  3. Arnheim N (1983) Concerted evolution of multigene families, Evolution of Genes and Proteins. Nei M. and Koehn R.K., eds., Sinauer, Sunderland, MA, pp. 38−61
  4. Beebe NW, Ellis JT, Cooper RD and Saul A (1999) DNA sequence analysis of the ribosomal DNA ITS2 region for the Anopheles punctulatus group of mosquitoes. Insect Mol. Biol. 8: 381−390 https://doi.org/10.1046/j.1365-2583.1999.83127.x
  5. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27:573−580 https://doi.org/10.1093/nar/27.2.573
  6. Boileau P, Walch G and Liotard JP (1992) Radiocinematographic study of active elevation of the prosthetic shoulder. Rev. Chir. Orthop. Reparatrice Appar. Mot. 78: 355−364
  7. Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic tool. Curr. Opin. Genet. Dev. 8: 669−674
  8. Chapman RE and Bourke AFG (2001) The influence of sociality on the conservation biology of social insects. Ecol. Letters 4: 650−662 https://doi.org/10.1046/j.1461-0248.2001.00253.x
  9. Collins FH and Paskewitz S (1996) A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Mol. Biol. 5: 1−9 https://doi.org/10.1111/j.1365-2583.1996.tb00034.x
  10. Corbet SA, Williams IH and Osborne JL (1991) Bees and the pollination of crops and wild flowers in the European Community. Bee World 72: 47−59 https://doi.org/10.1080/0005772X.1991.11099079
  11. Darvill B, Ellis JS, Lye GC and Goulson D (2006) Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum, (Hymenoptera: Apidae). Mol. Ecol. 15: 601−611 https://doi.org/10.1111/j.1365-294X.2006.02797.x
  12. De la Rua P, de May-Itza JW, Serrano J and Quezada- Euan JJG (2007) Sequence and RFLP analysis of the ITS2 ribosomal DNA in two Neotropical social bees, Melipona beecheii and Melipona yucatanica (Apidae, Meliponini). Insectes Sociaux 54: 418−423 https://doi.org/10.1007/s00040-007-0962-5
  13. Ellis JS, Knight ME, Darvill B and Goulson D (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae). Mol. Ecol. 15: 4375−4386 https://doi.org/10.1111/j.1365-294X.2006.03121.x
  14. Estoup A, Solingac M, Cornuet JM, Goudet J and Scholl A (1996) Genetic differentiation of continental and island populations of Bombus terrestris (Hymenoptera: Apidae) in Europe. Mol. Ecol. 5: 19−31 https://doi.org/10.1111/j.1365-294X.1996.tb00288.x
  15. Excoffier L, Laval G and Schneider S (2005) Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1: 47−50
  16. Excoffier L, Smouse PE and Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479−491
  17. Frankham R (1996) Conservation Genetics. Ann. Rev. Genet. 29: 305−327 https://doi.org/10.1146/annurev.ge.29.120195.001513
  18. Fritz GN, Conn J, Cockburn A and Seawright J (1994) Sequence analysis of ribosomal DNA internal transcribed spacer 2 from populations of Anopheles nunezyovari (Diptera: Culicidae). Mol. Biol. Evol. 11: 406−416
  19. Gomez-Zurita J, Juan C and Petitpierre E (2000) Sequence, secondary structure and phylogenetic analyses of the ribosomal internal transcribed spacer 2 (ITS2) in the Timarcha leaf beetles (Coleoptera: Chrysomelidae). Insect Mol. Biol. 9:591−604 https://doi.org/10.1046/j.1365-2583.2000.00223.x
  20. Hackett BJ, Gimnig J, Guelbeogo W, Constantini C, Koekemoer LL, Coetzee M, Collins FH and Besansky NJ (2000) Ribosomal DNA internal transcribed spacer (ITS2) sequences differenciate Anopheles funestus and A. rivulorum, and uncover a cryptic taxon. Insect Mol. Biol. 9: 369−374 https://doi.org/10.1046/j.1365-2583.2000.00198.x
  21. Hartl DL and Clark AG (1989) Principles of Population Genetics. Sinauer Associates, Inc., Sunderland, MA
  22. Huelsenbeck JP and Ronquist F (2001) MrBayes: Bayesian inference of phylogeny. Bioinformatics 17:754−755 https://doi.org/10.1093/bioinformatics/17.8.754
  23. Ji Y, Zhang D and He L (2003) Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Mol. Ecol. Notes 3: 581−585 https://doi.org/10.1046/j.1471-8286.2003.00519.x
  24. Katoh K, Misawa K, Kuma K and Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30: 3059−3066 https://doi.org/10.1093/nar/gkf436
  25. Keller A, Schleicher T, Schultz J, M$\ddot{u}$ller T, Dandekar T and Wolf M (2009) 5.8S-28S rRNA interaction and HMM-based ITS2 annotation. Gene 430: 50−57 https://doi.org/10.1016/j.gene.2008.10.012
  26. Kim MJ, Yoon HJ, Im HH, Jeong HU, Kim MI, Kim SR and Kim I (2009) Mitocondrial DNA sequence variation of the bomblebee, Bombus ardens (Hymenoptera: Apidae). J. Asia-Pacific Entomol. 12: 133−139 https://doi.org/10.1016/j.aspen.2009.02.003
  27. Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111−120 https://doi.org/10.1007/BF01731581
  28. Marcilla A, Bargues MD, Ramsey JM, Magallon- Gastelum E, Salazar-Schettino PM, Abad-Franch F, Dujardin JP, Schofield CJ and Mas-Coma S (2001) The ITS-2 of the nuclear rDNA as a molecular marker for populations, species and phylogenetic relationships in Triatominae (Hemiptera: Reduviidae), vectors of Chagas disease. Mol. Phyl. Evol. 18: 136-142 https://doi.org/10.1006/mpev.2000.0864
  29. Marinucci M, Romi R, Mancini P, Di Luca M and Severini C (1999) Phylogenetic relationships of seven palearctic members of the maculipennis complex inferred from ITS2 sequence analysis. Insect Mol. Biol. 8: 469−480 https://doi.org/10.1046/j.1365-2583.1999.00140.x
  30. Mikkola K (1978) Spring migrations of wasps and bumble bees on southern coast of Finland (Hymenoptera Vespidae and Apidae). Ann. Entomol. Fennici 44: 10−26
  31. Miller BR, Crabtree MB and Savage H (1996) Phylogeny of fourteen Culex mosquito species including the Culex pipines complex, inferred from the internal transcribed spacer of ribosomal DNA. Insect Mol. Biol. 5: 93−107 https://doi.org/10.1111/j.1365-2583.1996.tb00044.x
  32. Mukabayire O, Boccolini D, Lochouarn L, Fontenille D and Besansky NJ (1999) Mitochondrial and ribosomal internal transcribed spacer (ITS2) diversity of the African malaria vector Anopheles funestus. Mol. Ecol. 8: 289−297 https://doi.org/10.1046/j.1365-294X.1999.00567.x
  33. Posada D and Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14: 817−818 https://doi.org/10.1093/bioinformatics/14.9.817
  34. Swofford DL (2002) $PAUP^*$Phylogenetic Analysis Using Parsimony ($$^*and $$Other Method) ver. 4.10., Sunderland. MA: Sinauer Associates
  35. Vobis M, Haese JD, Mehlhorn H, Mencke N, Blagburn BL, Bond R, Denholm I, Dryden MW, Payne P, Rust MK, Schroeder I, Vaughn MB and Bledsoe D (2004) Molecular phylogeny of isolates of Ctenocephalides felis and related species based on analysis of ITS1, ITS2 and mitochondrial 16S rDNA sequences and random binding primers. Parasitol. Res. 94: 219−226 https://doi.org/10.1007/s00436-004-1201-x
  36. Vogler AP and De Salle R (1994) Evolutionary and phylogenetic information content of the ITS1 region in the tiger beetle Cicindela dorsilas. Mol. Biol. Evol. 11: 393−405
  37. Weekers PHH, De Jonckheere JH and Dumont JH (2001) Phylogenetic relationships inferred from ribosomal ITS sequences and biogeographic patterns in representatives of the genus Calopteryx (Insecta: Odonata) of the West Mediterranean and adjacent West European zone. Mol. Phyl. Evol. 20: 89−99 https://doi.org/10.1006/mpev.2001.0947
  38. Widmer A and Schmid-Hempel P (1999) The population genetic structure of a large temperate pollinator species Bombus pascuorum (Scopoli) (Hymenoptera:Apidae). Mol. Ecol. 8: 387−398 https://doi.org/10.1046/j.1365-294X.1999.00584.x
  39. Williams PH (1994) Phyolgenetic relationships among bumblebees (Bombus Latr.): a reappraisal of morphological evidence. Syst. Entomol. 19: 327−244 https://doi.org/10.1111/j.1365-3113.1994.tb00594.x
  40. Worheide G, Hooper JN and Degnan MB (2002) Phylogeography of western pacific Leucetta 'chagosensis' (Porifera: Calcarea) from ribosomal DNA sequences: implications for populations history and conservation of the Great Barrier Reef World Heritage Area (Australia). Mol. Ecol. 11: 1753−1768 https://doi.org/10.1046/j.1365-294X.2002.01570.x