DOI QR코드

DOI QR Code

High rate capability of carbonaceous composites as anode electrodes for lithium-ion secondary battery

Park, Dae-Yong;Park, Do-Youn;Yu, Lan;Lim, Yun-Soo;Kim, Myung-Soo

  • Published : 20090000

Abstract

Anode materials with high rate capability for Li-ion secondary batteries were investigated by using the mixture of graphite, cokes, and petroleum pitch. Since obvious potential plateaus were obtained at graphite contents above 40 wt.%, which would cause difficulties in perceiving the capacity variations as a function of electrical potential, the graphite content were determined at 20–30 wt.%. The composites with a given content of graphite and remaining content of petroleum pitch/cokes mixtures at 1:4, 1:1, and 4:1 mass ratios were heated at a temperature range of 800–1200 ${^{\circ}C}$. For a given composition of carbonaceous composite, the discharge rate capability improved but the reversible capacity decreased with increasing the heat treatment temperature. Although the reversible capacity increased with increasing content of the petroleum pitch for given graphite content and heat treatment temperature, the discharge rate capability decreased. The carbonaceous composites prepared by the mixture of 30 wt.% graphite and 70 wt.% petroleum pitch/cokesmixture at 1:4 mass ratio with the heat treatment at 800 ${^{\circ}C}$ showed relatively high electrochemical properties, of which reversible capacity, initial efficiency, discharge rate capability (retention of discharge capacity in 5 C/0.2 C) and charge capacity at 5 C were 312 mAh/g, 79%, 89% and 78 mAh/g, respectively.

Keywords

References

  1. T. Takamura, Solid State Ion 152 (2002) 19 https://doi.org/10.1016/S0167-2738(02)00325-9
  2. D. Ohms, M. Kohlhase, G. Benczur-Urmossy, G. Schadlich, J. Power Source 105 (2002) 127 https://doi.org/10.1016/S0378-7753(01)00930-2
  3. K. Takei, K. Ishihara, K. Kumai, T. Iwahori, K. Miyake, T. Nakatsu, N. Terada, N. Arai, J. Power Source 887 (2003) 119
  4. K. Adachi, H. Tajima, T. Hashimoto, K. Kobayashi, J. Power Source 897 (2003) 119
  5. K. Tamura, T. Horiba, T. Iwahori, J. Power Source 897 (2003) 119
  6. R. Spotnitz, in: W.A. Schalkwijk, B. Scrosati (Eds.), Advances in lithium batteries, Kluwer Academic/Plenum Publishers, New York, 2003, p. 433
  7. H.J. Kim, C.T. Lee, Eng. Chem. 9 (1998) 1065
  8. T.R. Kim, J.N. Lee, Y.S. Lim, M.S. Kim, Mater. Sci. Forum 544–545 (2007) 1029
  9. L. Yu, K.J. Kim, D.Y. Park, M.S. Kim, K.I. Kim, Y.S. Lim, Carbon Lett. 9 (3) (2008) 210; https://doi.org/10.5714/CL.2008.9.3.210
  10. S. Yang, I. Kim, M. Jeon, K. Kim, S. Moon, H. Kim, K. An, J. Ind. Eng. Chem. 14 (2008) 365 https://doi.org/10.1016/j.jiec.2008.01.013
  11. R. Alcantara, J.M. Jimenez Mateos, J.L. Tirado, J. Electrochem. Soc. 149 (2) (2002) A201 https://doi.org/10.1149/1.1431963
  12. M. Ishikawa, N. Sonobe, H. Nakauma, T. Iwasaki, Extended Abstracts of 35th Battery Symposium, Japan, 1994, pp. 47
  13. J.R. Dahn, A.K. Sleigh, H. Shi, J.N. Reimers, Q. Zhong, B.M. Way, Electrochem. Acta 38 (9) (1993) 1179 https://doi.org/10.1016/0013-4686(93)80048-5
  14. T. Zheng, Y. Liu, Fuller, S. Tseng, U. Von Sackon, J.R. Dahn, J. Electrochem. Soc. 142 (1997) 2851
  15. Z. Jiang, M. Alamair, K.M. Abraham, J. Electrochem. Soc. 142 (1995) 333 https://doi.org/10.1149/1.2043997
  16. T. Zheng, W.R. Mckinnon, J.R. Dahn, J. Electrochem. Soc. 143 (1996) 2137 https://doi.org/10.1149/1.1836972
  17. P. Zhou, P. Papanek, R. Lee, J.E. Fischer, W.A. Kamitakahara, J. Electrochem. Soc. 144 (1997) 1744 https://doi.org/10.1149/1.1837672
  18. P. Papanek, M. Radosavljevic, J.E. Fischer, Chem. Mater. 8 (1996) 1519 https://doi.org/10.1021/cm960100x

Cited by

  1. Performance of Expanded Graphite as Anode Materials for High Power Li-ion Secondary Batteries vol.11, pp.4, 2009, https://doi.org/10.5714/cl.2010.11.4.343
  2. Spheroidization Modification of Artificial Graphite Applied as Anode Materials for High Rate Lithium Ion Batteries vol.201, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amr.201-203.421
  3. Carbon nanotubes/amorphous carbon composites as high-power negative electrodes in lithium ion capacitors vol.44, pp.1, 2014, https://doi.org/10.1007/s10800-013-0606-6
  4. Preparation of Advanced Carbon Anode Materials from Mesocarbon Microbeads for Use in High C-Rate Lithium Ion Batteries vol.8, pp.6, 2015, https://doi.org/10.3390/ma8063550
  5. 고출력 리튬이온 이차전지 음극재용 피치/코크스/천연흑연 복합재의 제조 및 전기화학적 특성평가 vol.25, pp.6, 2015, https://doi.org/10.3740/mrsk.2015.25.6.279
  6. Impedance spectroscopy, ionic conductivity and dielectric studies of new Li+ ion conducting polymer blend electrolytes based on biodegradable polymers for solid state battery applications vol.27, pp.11, 2009, https://doi.org/10.1007/s10854-016-5267-x
  7. 붕소가 도핑된 리튬이온전지용 양극 활물질(LiNi0.90Co0.05Ti0.05O2)의 전기화학적 특성 vol.57, pp.6, 2019, https://doi.org/10.9713/kcer.2019.57.6.832
  8. 건식 스피드 믹서를 이용한 PFO 피치 코팅 천연 흑연의 전기화학적 성능 vol.59, pp.3, 2009, https://doi.org/10.9713/kcer.2021.59.3.410
  9. 건식 스피드 믹서를 이용한 PFO 피치 코팅 천연 흑연의 전기화학적 성능 vol.59, pp.3, 2009, https://doi.org/10.9713/kcer.2021.59.3.410