DOI QR코드

DOI QR Code

Enhanced Properties of Transparent Conductive Oxide Films Prepared on PEN Substrates with a $(SiO_2)_{40}(ZnO)_{60}$ Gas Barrier Layer

  • Kim, Hwa-Min (Department of Electronics Engineering, Catholic University of Daegu) ;
  • Kwon, Oh-Jung (Department of Electronics Engineering, Catholic University of Daegu)
  • Published : 20090700

Abstract

A $(SiO_2)_{40}(ZnO)_{60}$ (SZO) film with a very low water vapor transmission rate (WVTR) below $10^{-3}$g/$m^2$/day was coated as a gas barrier layer on a poly-ethylene naphthalate (PEN) substrate by rf-magnetron sputtering. This PEN with a SZO gas barrier layer was used as a flexible substrate for various transparent conductive oxide (TCO) films, such as $In_2O_3$-$SnO_2$ (ITO), Al-doped ITO (AITO) and $In_2O_3$-ZnO (IZO). Their electrical and optical properties were compared to the TCO films deposited on a bare PEN substrate without a gas barrier layer. We found that compared with the TCO films without gas barrier layer, the TCO films with a SZO gas barrier layer showed an enhanced electrical conductivity and electrical stability after bending around a 10-mm-radius cylinder. The enhanced electrical properties were considered to be the result of the SZO film acting as a blocking barrier layer against water vapor permeation or organic-solvent diffusion from the PEN substrate during deposition of the TCO films and as a buffer layer easing damage due to bending. Thus, we suggest that the PEN with a SZO barrier layer is sufficiently transparent and has a superior ability to protect against the permeation of water vapor so that it can be applied to TCO films for flexible displays.

Keywords

Acknowledgement

This work was supported by the research fund of Catholic University of Daegu.

References

  1. A. Gruniger and Ph. R. V. Rohr, Thin Solid Films 459, 308 (2004) https://doi.org/10.1016/j.tsf.2003.12.146
  2. H. Chatham, Surf. Coat. Tech. 78, 1 (1996) https://doi.org/10.1016/0257-8972(95)02420-4
  3. A. S. D. S. Sobrinho, M. Latreche, G. Czeremuszkin, J. E. K. Sapieha and M. R. Wertheimer, J. Vac. Sci. Tech. A 16, 3190 (1999)
  4. M. Fujihira, L. M. Do, A. Koike and E. M. Han, Appl. Phys. Lett. 68, 1787 (1996) https://doi.org/10.1063/1.116667
  5. M. Vogt and R. Hauptman, Surf. Coat. Tech. 74-75, 676 (1995) https://doi.org/10.1016/0257-8972(95)08268-9
  6. A. G. Erlat, B. M. Heny, J. J. Ingram, D. B. Moutain, A. McGuigan, R. P. Howson, C. R. M. Grovenor, G. A. D. Briggs and Y. Tsukahara, Thin Solid Films 388, 78 (2001) https://doi.org/10.1016/S0040-6090(01)00836-7
  7. A. G. Erlat, B. M. Heny, J. J. Ingram, C. R. M. Grovenor, G. A. D. Briggs, R. J. Chater and Y. Tsukahara, J. Phys. Chem. B 108, 883 (2004) https://doi.org/10.1021/jp036244y
  8. J. Y. Yang, S. T. Kim, J. S. Hong, W. P. Hong, J. J. Kim, S. H. Park, H. M. Kim and J. M. Moon, J. Korean Phys. Soc. 50, 910 (2007) https://doi.org/10.3938/jkps.50.910
  9. J. S. Hong, B. R. Rhee, H. M. Kim, K. C. Je, Y. J. Kang and J. S. Ahn, Thin Solid Films 467, 158 (2004) https://doi.org/10.1016/j.tsf.2004.03.014
  10. Y.-G. Kim, S.-W. Ryu, D.-S. Kim, B.-R. Rhee, J.-J. Kim, W.-P. Hong, H.-M. Kim and S.-H. Park, J. Korean Phys. Soc. 53, 1722 (2008) https://doi.org/10.3938/jkps.53.1722
  11. H. M. Kim, S. K. Jung, J. S. Ahn, Y. J. Kang and K. C. Je, Jpn. J. Appl. Phys. 42, 223 (2003) https://doi.org/10.1143/JJAP.42.223