Magnetic Methods for Determining the Monodispersity of Ferrofluids

Yoon, Sung-Hyun

  • Published : 20090100

Abstract

Methods of determining the particle sizes and the distribution of particle sizes in a nanoparticle ferrofluid through magnetic measurements are described. For these measurements, a water-based magnetite ferrofluid was prepared by using the chemical co-precipitation method. A direct morphological study using TEM showed that the nominal radius of the particles was 6 nm with some distribution width. The DC magnetization curve at room temperature was shown to be superpara-magnetic, in good aggreement with the theoretical curve calculated for a particle size distribution with an average radius of 5.45 nm and a distribution width of 3.8 nm. The frequency dependence of the complex susceptibility, $\chi(\omega)$, of the ferrofluid was measured by using the slit-toroid technique. The sample exhibited a frequency response due to N$\'{e}$el's rotational relaxation, from which an estimate of particle size was made. Effects of inter-particle interaction was examined through the dilution experiments. All the particle sizes and distributions were obtained by introducing an improved model distribution function.

Keywords

References

  1. S. H. Chung, A. Hoffmann, S. D. Bader, C. Liu, B. Kay, L. Makowski and L. Chen, Appl. Phys. Lett. 85, 2971 (2004) https://doi.org/10.1063/1.1801687
  2. J. Connolly and T. G. St. Pierre, J. Magn. Magn. Mater. 225, 156 (2001) https://doi.org/10.1016/S0304-8853(00)01245-2
  3. R. Hergt, R. Hiergeist, M. Zeisberger, G. Glockl, W. Weitschies, L. P. Lamirez, I. Hilger and W. A. Kaiser, J. Magn. Magn. Mater. 280, 358 (2004) https://doi.org/10.1016/j.jmmm.2004.03.034
  4. Y. Bao, A. B. Pakhomov and K. M. Krishnan, J. Appl. Phys. 99, 08H107 (2006) https://doi.org/10.1063/1.2172203
  5. B. Payet, D. Vincent, L. Delaunay and G. Noyel, J. Magn. Magn. Mater. 186, 168 (1998) https://doi.org/10.1016/S0304-8853(98)00082-1
  6. R. E. Rosensweig, J. Magn. Magn. Mater. 252, 370 (2002) https://doi.org/10.1016/S0304-8853(02)00706-0
  7. M. Gonzales and K. M. Krishnan, J. Magn. Magn. Mater. 293, 265 (2006) https://doi.org/10.1016/j.jmmm.2005.02.020
  8. M. A. Martsenyuk, Y. L. Raikher and M. I. Shliomis, Sov. Phys. - JETP 38, 413 (1978)
  9. W. F. Brown, J. Appl. Phys. 34, 1319 (1963) https://doi.org/10.1063/1.1729489
  10. M. I. Shliomis, Sov. Phys.-Usp. 17, 153 (1974) https://doi.org/10.1070/PU1974v017n02ABEH004332
  11. P. Debye, Polar Molecules (Chemical Catalog Company, New York, 1929)
  12. R. W. Chantrell, J. Popplewell and S. W. Charles, IEEE Trans. Mag. 14, 975 (1978) https://doi.org/10.1109/TMAG.1978.1059918
  13. R. Massart, IEEE Trans. Mag. 17, 1247 (1981) https://doi.org/10.1109/TMAG.1981.1061188
  14. T. H. Hai, L. H. Phuc, D. T. K. Dung, N. L. Huyen, B. D. Long, L. K. Vinh, N. T. T. Kieu and M. Abe, J. Korean Phys. Soc. 53, 772 (2008) https://doi.org/10.3938/jkps.53.772
  15. P. C. Fannin, B. K. P. Scaife and S. W. Charles, J. Phys. E: Sci. Instrum. 19, 238 (1986) https://doi.org/10.1088/0022-3735/19/3/018
  16. P. C. Fannin, B. K. P. Scaife and S. W. Charles, J. Magn. Magn. Mater. 65, 279 (1987) https://doi.org/10.1016/0304-8853(87)90051-5
  17. P. C. Fannin, B. K. P. Scaife and S. W. Charles, J. Magn. Magn. Mater. 72, 95 (1988) https://doi.org/10.1016/0304-8853(88)90276-4
  18. E. P. Wohlfarth, Ferromagnetic Materials (North- Holland Publishing Company, New York, 1982), p. 296
  19. P. C. Fannin and S. W. Charles, J. Phys. D: Appl. Phys. 22, 187 (1989) https://doi.org/10.1088/0022-3727/22/1/027
  20. M. Hanson, J. Magn. Magn. Mater. 96, 105 (1991) https://doi.org/10.1016/0304-8853(91)90617-J
  21. P. C. Fannin and S. W. Charles, Phys. Rev. B 52, 16055 (1995) https://doi.org/10.1103/PhysRevB.52.16055
  22. R. Kaiser and G. Miskolczy, J. Appl. Phys. 41, 1064 (1970) https://doi.org/10.1063/1.1658812