DOI QR코드

DOI QR Code

Use of Nitrate-nitrogen as a Sole Dietary Nitrogen Source to Inhibit Ruminal Methanogenesis and to Improve Microbial Nitrogen Synthesis In vitro

  • Guo, W.S. (College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, China Agricultural University) ;
  • Schaefer, D.M. (Department of Animal Sciences, University of Wisconsin-Madison) ;
  • Guo, X.X. (College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, China Agricultural University) ;
  • Ren, L.P. (College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, China Agricultural University) ;
  • Meng, Qingxiang (College of Animal Science and Technology, State Key Laboratory of Animal Nutrition, China Agricultural University)
  • Received : 2008.06.30
  • Accepted : 2008.11.12
  • Published : 2009.04.01

Abstract

An in vitro study was conducted to determine the effect of nitrate-nitrogen used as a sole dietary nitrogen source on ruminal fermentation characteristics and microbial nitrogen (MN) synthesis. Three treatment diets were formulated with different nitrogen sources to contain 13% CP and termed i) nitrate-N diet (NND), ii) urea-N diet (UND), used as negative control, and iii) tryptone-N diet (TND), used as positive control. The results of 24-h incubations showed that nitrate-N disappeared to background concentrations and was not detectable in microbial cells. The NND treatment decreased net $CH_4$ production, but also decreased net $CO_2$ production and increased net $H_2$ production. Total VFA concentration was lower (p<0.05) for NND than TND. Suppression of $CO_2$ production and total VFA concentration may be linked to increased concentration of $H_2$. The MN synthesis was greater (p<0.001) for NND than UND or TND (5.74 vs. 3.31 or 3.34 mg/40 ml, respectively). Nitrate addition diminished methane production as expected, but also increased MN synthesis.

Keywords

References

  1. Allison, M. J. and C. A. Reddy. 1984. Adaptations of gastrointestinal bacteria in response to changes in dietary oxalate and nitrate. In: Proceedings of the Third International Symposium on Microbial Ecology (Ed. M. J. Klug and C. A. Reddy). American Society for Microbiology. Washington, DC. pp. 248-256
  2. AOAC. 1990. Official methods of analysis. 15th edn. Association of Official Analytical Chemists, Arlington, Virginia
  3. Broderick, G. A. and J. H. Kang. 1980. Automated simultaneous determination of ammonia and amino acids in ruminal fluids and in vitro media. J. Dairy Sci. 63:64-75 https://doi.org/10.3168/jds.S0022-0302(80)82888-8
  4. Caver, L. A. and W. H. Pfander. 1974. Some metabolic aspects of urea and/or potassium nitrate utilization by sheep. J. Anim. Sci. 38:410-417
  5. Clarens, M., N. Bernet, J. Delgen$\acute{e}$s and R. Moletta. 1998. Effects of N-oxides and denitrification by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei. FEMS. Microbiol. Ecol. 25:271-276 https://doi.org/10.1111/j.1574-6941.1998.tb00479.x
  6. Conrad, R. and B. Wetter. 1990. Influence of temperature on energetics of hydrogen metabolism in homoacetogenic, methanogenic, and other anaerobic bacteria. Arch. Microbiol. 155:94-98 https://doi.org/10.1007/BF00291281
  7. Cord-Ruwisch, R., H. J. Seitz and R. Conrad. 1988. The capacity of hydrogenotrophic anaerobic bacteria to compete for traces of hydrogen depends on the redox potential of the terminal electron acceptor. Arch. Microbiol. 149:350-357 https://doi.org/10.1007/BF00411655
  8. Counotte, G. H. M., A. T. van't Klooster and J. van der Kuilen. 1979. An analysis of the buffer system in the rumen of dairy cattle. J. Anim. Sci. 49:1536-1544 https://doi.org/10.1002/jsfa.1596
  9. Czerkawski, J. W. and G. Breckenridge. 1971. Determination of concentration of hydrogen and some other gasses dissolved in biological fluids. Lab. Pract. 20:403-413
  10. Emerick, R. J. 1988. Nitrate toxicity. In: The ruminant animal digestive physiology and nutrition (Ed. D. C. Church). Waveland Press, Prospect Heights, IL. pp. 480-483
  11. Farra, P. A. and L. D. Satter. 1971. Manipulation of the ruminal fermentation. III. Effect of nitrate on ruminal volatile fatty acid production and milk composition. J. Dairy Sci. 54:1018-1024 https://doi.org/10.3168/jds.S0022-0302(71)85965-9
  12. Hasan, S. M. and J. B. Hall. 1975. The physiological function of nitrate reduction in Clostridium perfringens. J. Gen. Microbiol. 87:120-128 https://doi.org/10.1016/S1389-1723(02)80187-6
  13. Hungate, R. E. 1967. Hydrogen as an intermediate in the rumen fermentation. Arch. Microbiol. 59:158-164
  14. Isaacson, H. R., F. C. Hinds, M. P. Bryant and F. N. Owens. 1975. Efficiency of energy utilization by mixed rumen bacteria in continuous culture. J. Dairy Sci. 58:1645-1659 https://doi.org/10.3168/jds.S0022-0302(75)84763-1
  15. Iwamoto, M., N. Asanuma and T. Hino. 1999. Effects of nitrate combined with funarate on methanogenesis, fermentation, and cellulose digestion by mixed ruminal microbes in vitro. Anim. Sci. J. 70:471-478
  16. Iwamoto, M., N. Asanuma and T. Hino. 2001. Effects of pH and electron donors on nitrate and nitrite reduction in ruminal microbiota. Anim. Sci. J. 72:117-125
  17. Iwamoto, M., N. Asanuma and T. Hino. 2002. Ability of Selenomonas ruminantium, Viellonella parvula, and Wolinella succinogenes to reduce nitrate and nitrite with special reference to the suppression of ruminal methanogenesis. Anaerobe 8:209-215 https://doi.org/10.1006/anae.2002.0428
  18. Jones, G. A. 1972. Dissimilatory metabolism of nitrate by the rumen microbiota. Can. J. Microbiol. 18:1783-1789 https://doi.org/10.1139/m72-279
  19. Kaspar, H. F. and J. M. Tiedje. 1981. Dissimilatory reduction of nitrate and nitrite in the bovine rumen: nitrous oxide production and effect of acetylene. Appl. Environ. Microbiol. 41:705-709
  20. Kluber, H. D. and R. Conrad. 1998. Effects of nitrate, nitrite, NO, and $N_{2}O$ on methanogenesis and other redox processes in anoxic rice field soil. FEMS Microbiol. Ecol. 25:301-318
  21. Lichtenwalner, R. E., J. P. Fontenot and R. E. Tucker. 1973. Effect of source of supplemental nitrogen and level of nitrate on feedlot performance and vitamin A metabolism of fattening beef calves. J. Anim. Sci. 37:837-847
  22. Madigan, M. T., J. M. Martinko and J. Parker. 1997. Energy calculations in microbial bioenergetics. In: Brock biology of microorganisms, 8th Ed. Prentice Hall, Upper Saddle River, NJ, USA. pp. A1-A4
  23. Marais, J. P., J. J. Therion, R. I. Mackie, A. Kistner and C. Dennison. 1988. Effect of nitrate and its reduction products on the growth and activity of the rumen microbial population. Br. J. Nutr. 59:301-313 https://doi.org/10.1079/BJN19880037
  24. Menke, K. H., L. Raab, A. Salewski, H. Steingass, D. Fritz and W. Schneider. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agri. Sci. (Camb.) 93:217-222 https://doi.org/10.1017/S0021859600086305
  25. Merry, R. J. and A. B. McAllan. 1983. A comparison of the chemical composition of mixed bacteria harvested from the liquid and solid fractions of rumen digesta. Br. J. Nutr. 50:701-709 https://doi.org/10.1079/BJN19830142
  26. Richardson, D. J. and N. J. Watmough. 1999. Inorganic nitrogen metabolism in bacteria. Curr. Opin. Chem. Biol. 3:207-219 https://doi.org/10.1016/S1367-5931(99)80034-9
  27. Russell, J. B. and J. L. Jeraci. 1984. Effect of carbon monoxide on fermentation of fiber, starch, and amino acids by mixed rumen microorganisms in vitro. Appl. Environ. Microbiol. 48:211-217
  28. Russell, J. B. and R. J. Wallace. 1997. Energy-yielding and energy-consuming reactions. In: The rumen microbial ecosystem, 2nd Ed. Blackie Academic and Professional, New York, NY, USA. pp. 246-282
  29. Schofield, P. 2000. Gas production (Chapter 10). In: Farm animal metabolism and nutrition (Ed. J. P. F. D'Mello). CABI Publishing, UK. pp. 450
  30. Smolenski, W. J. and J. A. Robinson. 1988. In situ rumen hydrogen concentrations in steers fed eight times daily, measured using a mercury reduction detector. FEMS. Microbiol. Ecol. 53:95-100 https://doi.org/10.1111/j.1574-6968.1988.tb02652.x
  31. Snedecor, G. W. and W. G. Cochran. 1980. In: Statistical Methods, 7th Ed. The Iowa State University Press, Ames, IA, USA. pp. 507
  32. Takahashi, J. and B. A. Young. 1991. Prophylactic effect of Lcysteine on nitrate-induced alteration in respiratory exchange and metabolic rate in sheep. Anim. Feed Sci. Technol. 35:105-113 https://doi.org/10.1016/0377-8401(91)90103-Y
  33. Thauer, R. K., K. Jungermann and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100-180
  34. Turner, A. W. and V. E. Hodgetts. 1955. Buffer systems in the rumen of sheep. Aust. J. Agric. Res. 6:115-144 https://doi.org/10.1071/AR9550115
  35. Tugtas, A. E. and S. G. Pavlostathis. 2007. Inhibitory effects of nitrogen oxides on a mixed methanogenic culture. Biotechnol. Bioeng. 96:444-455 https://doi.org/10.1002/bit.21105
  36. Wohlt, J. E., J. H. Clark and F. S. Blaisdell. 1976. Effect of sampling location, time, and method of concentration of ammonia nitrogen in rumen fluid. J. Dairy Sci. 59:459-464 https://doi.org/10.3168/jds.S0022-0302(76)84227-0

Cited by

  1. Effects of dietary nitrate on fermentation, methane production and digesta kinetics in sheep vol.50, pp.8, 2010, https://doi.org/10.1071/AN09211
  2. Ruminant enteric methane mitigation: a review vol.51, pp.6, 2011, https://doi.org/10.1071/AN10163
  3. Effect of Encapsulating Nitrate in Sesame Gum on In vitro Rumen Fermentation Parameters vol.27, pp.11, 2014, https://doi.org/10.5713/ajas.2014.14280
  4. Effects of Nitrate Addition on Rumen Fermentation, Bacterial Biodiversity and Abundance vol.28, pp.10, 2015, https://doi.org/10.5713/ajas.15.0091
  5. Shifts in metabolic hydrogen sinks in the methanogenesis-inhibited ruminal fermentation: a meta-analysis vol.6, pp.1664-302X, 2015, https://doi.org/10.3389/fmicb.2015.00037
  6. Dose-response effect of nitrate on hydrogen distribution between rumen fermentation end products: an in vitro approach vol.56, pp.3, 2016, https://doi.org/10.1071/AN15526
  7. Use of dietary nitrate to increase productivity and reduce methane production of defaunated and faunated lambs consuming protein-deficient chaff vol.56, pp.3, 2016, https://doi.org/10.1071/AN15525
  8. Managing the rumen to limit the incidence and severity of nitrite poisoning in nitrate-supplemented ruminants vol.56, pp.8, 2016, https://doi.org/10.1071/AN15324
  9. Nitrate and Inhibition of Ruminal Methanogenesis: Microbial Ecology, Obstacles, and Opportunities for Lowering Methane Emissions from Ruminant Livestock vol.7, pp.1664-302X, 2016, https://doi.org/10.3389/fmicb.2016.00132
  10. Effects of alfalfa flavonoids on the production performance, immune system, and ruminal fermentation of dairy cows vol.30, pp.10, 2017, https://doi.org/10.5713/ajas.16.0579
  11. Nitrate decreases methane production also by increasing methane oxidation through stimulating NC10 population in ruminal culture vol.7, pp.1, 2017, https://doi.org/10.1186/s13568-017-0377-2
  12. Redirection of Metabolic Hydrogen by Inhibiting Methanogenesis in the Rumen Simulation Technique (RUSITEC) vol.8, pp.1664-302X, 2017, https://doi.org/10.3389/fmicb.2017.00393
  13. The effect of incremental levels of dietary nitrate on methane emissions in Holstein steers and performance in Nelore bulls1 vol.92, pp.11, 2014, https://doi.org/10.2527/jas.2014-7677
  14. Nitrate decreases ruminal methane production with slight changes to ruminal methanogen composition of nitrate-adapted steers vol.18, pp.1, 2018, https://doi.org/10.1186/s12866-018-1164-1
  15. Effects of nitrate supplementation and forage level on gas production, nitrogen balance and dry-matter degradation in sheep vol.59, pp.3, 2019, https://doi.org/10.1071/AN17759
  16. Comparisons of In vitro Nitrate Reduction, Methanogenesis, and Fermentation Acid Profile among Rumen Bacterial, Protozoal and Fungal Fractions vol.24, pp.4, 2009, https://doi.org/10.5713/ajas.2011.10288
  17. Effects of nitrate on methane production, fermentation, and microbial populations in in vitro ruminal cultures vol.103, pp.1, 2009, https://doi.org/10.1016/j.biortech.2011.10.013
  18. Encapsulated nitrate replacing soybean meal changes in vitro ruminal fermentation and methane production in diets differing in concentrate to forage ratio vol.90, pp.10, 2019, https://doi.org/10.1111/asj.13251
  19. Replacing urea with nitrate as a non-protein nitrogen source increases lambs' growth and reduces methane production, whereas acacia tannin has no effect vol.259, pp.None, 2009, https://doi.org/10.1016/j.anifeedsci.2019.114360
  20. A novel identified Pseudomonas aeruginosa , which exhibited nitrate‐ and nitrite‐dependent methane oxidation abilities, could alleviate the disadvantages caused by nitrate supplementatio vol.14, pp.4, 2009, https://doi.org/10.1111/1751-7915.13726
  21. Effects of Bacillus megatherium 1259 on Growth Performance, Nutrient Digestibility, Rumen Fermentation, and Blood Biochemical Parameters in Holstein Bull Calves vol.11, pp.8, 2009, https://doi.org/10.3390/ani11082379
  22. Effect of Methionine Supplementation on Rumen Microbiota, Fermentation, and Amino Acid Metabolism in In Vitro Cultures Containing Nitrate vol.9, pp.8, 2009, https://doi.org/10.3390/microorganisms9081717
  23. Ginkgo Biloba L. Residues Partially Replacing Alfalfa Hay Pellet in Pelleted Total Mixed Ration on Growth Performance, Serum Biochemical Parameters, Rumen Fermentation, Immune Function and Meat Qualit vol.11, pp.11, 2009, https://doi.org/10.3390/ani11113046
  24. Optimization of Biomethane Production via Fermentation of Chicken Manure Using Marine Sediment: A Modeling Approach Using Response Surface Methodology vol.18, pp.22, 2009, https://doi.org/10.3390/ijerph182211988