Development of a Land Surface Temperature-Retrieval Algorithm from MTSAT-1R Data

Hong, Ki-Ok;Suh, Myoung-Seok;Kang, Jeon-Ho

  • Published : 20090500

Abstract

Land surface temperature (LST) is a useful surface parameter for a wide range of applications, such as agriculture and the numerical and climate-modeling community. As a result, operational observations of LST on various scales are gaining increased scientific interest. In this study, we developed a split window-type LST retrieval algorithm to estimate the LST from MTSAT-1R data. The coefficients of the split-window algorithm were obtained by means of a statistical regression analysis using a synthetic match-up database. The database was made through radiative transfer simulations using MODTRAN 4 for wide range of atmospheric profiles, spectral emissivity, satellite zenith angle (SZA), and various lapse-rate conditions, including surface inversions. The sensitivity analysis showed that the LST algorithm reproduces LST with a reasonable quality. However, the algorithm has a tendency to overestimate and underestimate for surface inversion and superadiabatic conditions, respectively, especially for warm temperatures, and its performance is superior when the SZA is small and the lapse rate is neutral. Validation results using Moderate-Resolution Imaging Spectroradiometer (MODIS) LST data showed that the correlation coefficients and RMSE are about 0.83~0.99 and 1.09~4.06 K, respectively. The quality of retrieved LST is significantly better at nighttime than at the daytime and in vegetated areas rather than barren areas. The validation results showed that the LST retrieval algorithm developed in this study could be used for operational retrieval of LST from data compiled by MTSAT-1R and Korea’s Communication, Ocean and Meteorological Satellite (COMS), with some modifications.

Keywords

References

  1. Becker, F., and Z.-L. Li, 1990: Toward a local split window method over land surface. Int. J. Remote Sens., 3, 369–393
  2. _____, and _____, 1995: Surface temperature and emissivity at various scales: Definition, measurement and related problems. Remote Sens. Rev., 12, 225–253 https://doi.org/10.1080/02757259509532286
  3. Berk, A., G. P. and Coauthors, 1999: MODTRAN4 Radiative Transfer Modelling for Atmospheric Correction. SPIE Proc. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III, 3756, 348–353 https://doi.org/10.1117/12.366388
  4. Caselles, V., C. Coll, and E. Valor, 1997: Land surface emissivity and temperature determination in the whole HAPEX-Sahel area from AVHRR data. Int. J. Remote Sens., 18, 1009–1027 https://doi.org/10.1080/014311697218548
  5. Chung, C. Y., H. K. Lee, H. J. Ahn, M. H. Ahn, and S. N. Oh, 2006: Developing the cloud detection algorithm for COMS meteorological data processing system. Korean J. Remote Sens., 22, 367–372. (in Korean with English abstract)
  6. Gutman, G., and A. Ignatov, 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 1533–1543 https://doi.org/10.1080/014311698215333
  7. Han, K.-S., A. A. Viau, and F. Anctil, 2004: An analysis of GOES and NOAA derived land surface temperatures estimated over a boreal forest. Int. J. Remote Sens., 25, 4761–4780 https://doi.org/10.1080/01431160410001680446
  8. Jiang, J.-M., Z.-L. Li, and F. Nerry, 2006: Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI. Remote Sens. Environ., 105, 326–340 https://doi.org/10.1016/j.rse.2006.07.015
  9. Kang, J.-H., M.-S. Suh, and C.-H. Kwak, 2007: A comparison of land cover data sets over Asian region: USGS, IGBP and UMd. Atmosphere, 17, 159–169. (in Korean with English abstract)
  10. Kerr, Y. H., J. P. Lagouarde, and J. Imbernon, 1992: Accurate land surface temperature retrieval from AVHRR data with use of an improved split window. Remote Sens. Environ., 41, 197–209
  11. KMA, 2008: Development of Meteorological Data Processing Systems of Communication, Ocean and Meteorological Satellite (V), Korea Meteorological Administration, 953 pp. (in Korean)
  12. Loveland, T. R., B. C. Reed, J. F. Brown, D. O. Ohlen, Z. Zhu, L. Yang, and J. W. Merchant, 2000: Development of a global land cover characteristics data base and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sen., 21, 1251–1277 https://doi.org/10.1080/014311600210164
  13. Madeira, C. P., 2002: Generalized split-window algorithm for retrieving land surface temperature from MSG/ SEVIRI data. Proc. SAF Training Workshop –. Land Surface Analysis, Lisbon Portugal, EUMETSAT
  14. Momeni, M., and M. R. Saradjian, 2007: Evaluating NDVI-based emissivities of MODIS bands 31 and 32 using emissivities derived by Day/Night LST algorithm. Remote Sens. Environ., 106, 190–198 https://doi.org/10.1016/j.rse.2006.08.005
  15. Peres, L., and C. C. DaCamara, 2002: An emissivity look-up table for LST estimations from MSG data. SAF on land Surface Analysis Training Workshop, Lisbon, Portugal
  16. _____, and _____, 2004: Land surface temperature and emissivity estimation based on the two-temperature method: Sensitivity analysis using simulated MSG/ SEVIRI data. Remote Sens. Environ., 91, 377–389 https://doi.org/10.1016/j.rse.2004.03.011
  17. Prata, A. J., and R. P. Cechet, 1999: An assessment of the accuracy of land surface temperature determination from the GMS-5 VISSR. Remote Sens. Environ., 67, 1–14 https://doi.org/10.1016/S0034-4257(98)00055-8
  18. Price, J. C., 1984: Land surface temperature measurements from the split-window channels of the NOAA 7 AVHRR. J. Geophys. Res., 89, 7231–7237 https://doi.org/10.1029/JD089iD05p07231
  19. Sobrino, J. A., and M. Romaguera, 2004: Land surface temperature retrieval from MSG1-SEVIRI data. Remote Sens. Environ., 92, 247–254 https://doi.org/10.1016/j.rse.2004.06.009
  20. Suh, M.-S., S.-H. Kim, and J.-H. Kang, 2008: A comparative study of algorithms for estimating land surface temperature from MODIS data. Korean J. Remote Sens., 24, 65–78 https://doi.org/10.7780/kjrs.2008.24.1.65
  21. Ulivieri, C., M. M. Castronouvo, R. Francioni, and A. Cardillo, 1994: A split-window algorithm for estimating land surface temperature from satellites. Adv. Space Res., 14, 59–65 https://doi.org/10.1016/0273-1177(94)90193-7
  22. Valor, E., and V. Caselles, 1996: Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sens. Environ., 57, 164–184 https://doi.org/10.1016/0034-4257(96)00039-9
  23. Van de Griend, A. A., and M. Owe, 1993: On the relationship between thermal emissivity and normalized difference vegetation index for natural surface. Int. J. Remote Sens., 14, 1119–1131 https://doi.org/10.1080/01431169308904400
  24. Wan, Z., 2008: New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sens. Environ., 112, 59–74 https://doi.org/10.1016/j.rse.2006.06.026
  25. _____, and J. Dozier, 1996: A generalized split-window algorithm for retrieval of land surface temperature from space. IEEE Trans. Geosci. Remote Sens., 34, 892-905 https://doi.org/10.1109/36.508406
  26. Wang, W., S. Liang, and T. Meyers, 2008: Validating MODIS land surface temperature products using long-term nighttime ground measurements. Remote Sens. Environ., 112, 623–635 https://doi.org/10.1016/j.rse.2007.05.024
  27. Watson, K., 1992: Spectral ratio method for measuring emissivity. Remote Sens. Environ., 42, 113–116 https://doi.org/10.1016/0034-4257(92)90094-Z
  28. Amiro, B.D., 1990: Drag coefficients and turbulent spectra within three boreal forest canopies. Bound.-Layer Meteor., 52, 227-246 https://doi.org/10.1007/BF00122088
  29. Baldocchi, D. D., and T. P. Meyers, 1988: Turbulence structure in a deciduous forest. Bound.-Layer Meteor., 43, 345-364 https://doi.org/10.1007/BF00121712
  30. Blanken, P. D., T. A. Black, H. H. Neumann, G. Den Hartog, P. C. Yang, Z. Nesic, R. Staebler, W. Chen, and M. D. Novak, 1998: Turbulent flux measurements above and below the overstory of boreal aspen forest. Bound.- Layer Meteor., 89, 109-140 https://doi.org/10.1023/A:1001557022310
  31. Brunet, Y., and M. R. Irvine, 2000: The control of coherent eddies in vegetation canopies: Streamwise structure spacing, canopy shear scale and atmospheric stability. Bound.-Layer Meteor., 94, 139-163 https://doi.org/10.1023/A:1002406616227
  32. Cava, D., G. G. Katul, A. Scrimieri, D. Poggi, A. Cescatti, and U. Giostra, 2006: Buoyancy and the sensible heat flux budget within dense canopies. Bound.-Layer Meteor., 118, 217-240 https://doi.org/10.1007/s10546-005-4736-1
  33. Finnigan, J., 2000: Turbulence in plant canopies. Ann. Rev. Fluid Mech., 32, 519-571 https://doi.org/10.1146/annurev.fluid.32.1.519
  34. Howell, J. F. and L. Mahrt, 1997: Multiresolution flux decomposition. Bound.-Layer Meteor., 83, 117-137 https://doi.org/10.1023/A:1000210427798
  35. Kaimal, J. C., J. C. Wyngaard, Y. Izumi, and O. R. Cote, 1972: Spectral characteristics of surface layer turbulence. Quart. J. Roy. Meteor. Soc., 98, 563-589 https://doi.org/10.1002/qj.49709841707
  36. ______, and J. J. Finnigan, 1994: The Atmospheric Boundary Layer Flows: Their Structure and Measurement, Oxford University Press, 289 pp https://doi.org/10.1002/qj.49712152512
  37. Law, B. E., S. Van Tuyl, A. Cescatti, and D.D. Balddocchi, 2001: Estimation of leaf area index in open-canopy ponderosa pine forests at different succssional stages and management regimes in Oregon. Agric. Forest Meteor., 108, 1-14 https://doi.org/10.1016/S0168-1923(01)00226-X
  38. Leclerc, M. Y., K. C. Beissner, R. H. Shaw, G. Den Hartog, and H. H. Neumann, 1990: The influence of atmospheric stability on the budgets of the Reynolds stress and turbulent kinetic energy within and above a deciduous forest. J. Appl. Meteorol., 29, 916-933 https://doi.org/10.1175/1520-0450(1990)029<0916:TIOASO>2.0.CO;2
  39. Lee, Y. H., 2009: The influence of local stability on heat and momentum transfer within open canopies. Bound. -Layer Meteor., doi:10.1007/s10546-009-9405-3
  40. ______, and L. Mahrt, 2005: Effect of stability on mixing in open canopies. Agric. Forest Meteor., 135, 169-179 https://doi.org/10.1016/j.agrformet.2005.11.013
  41. Liu, S., H. Liu, M. Xu, Y. Leclerc, T. Zhu, C. Jin, Z. Hong, and H. Liu, 2001: Turbulence spectra and dissipation rates above and within a forest canopy. Bound.-Layer Meteor., 98, 83-102 https://doi.org/10.1023/A:1018715812229
  42. Raupach, M. R., J. J. Finnigan, and Y. Brunet, 1996: Coherent eddies and turbulence in vegetation canopies: The mixing-layer analogy. Bound-Layer Meteor., 78, 351-382 https://doi.org/10.1007/BF00120941
  43. Schwarz P, B. Law, M. Williams, J. Irvine, M. Kurpius, and D. Moore, 2004: Climatic versus biotic constraints on carbon and water fluxes in seasonally drought-affected ponderosa pine ecosystems. Global Biochem. Cycles, 18, GB4007, doi:10,1029/2004GB002234
  44. Su, H.-B, R. H. Shaw, U. K. T. Paw, C.-H. Moeng, and P. P. Sullivan, 1998: Turbulent statistics of neutrally stratified flow within and above a sparse forest from large-eddy simulation and field observations. Bound. -Layer Meteor., 88, 363-397 https://doi.org/10.1023/A:1001108411184
  45. Taylor, G. I., 1938: The spectrum of turbulence. Proc. Roy. Soc. London, 164A, 476-490 https://doi.org/10.1098/rspa.1938.0032
  46. Tennekes, H., and J. L. Lumley, 1972: A First Course in Turbulence. MIT press, 300 pp