DOI QR코드

DOI QR Code

Pulsed Current Activated Combustion Synthesis and Consolidation of Nanostructured $ReSi_{1.75}$

Shon, In-Jin;Kim, Su-Chul;Lee, Byung-Soo;Kim, Byung-Ryang

  • Published : 20090300

Abstract

Dense nanostructured $ReSi_{1.75}$ was synthesized by the pulsed current activated combustion synthesis (PCACS) method within 2 min in one step from mechanically activated powders of Re and 1.75 Si. Simultaneous combustion synthesis and densification were accomplished under the combined effects of a pulsed current and mechanical pressure. Highly dense $ReSi_{1.75}$ was produced under simultaneous application of 80 MPa of pressure and a pulsed current. The average grain size and mechanical properties (hardness and fracture toughness) of the compound were investigated.

Keywords

References

  1. M. E. Schlesinger, Chem. Rev. 90, 607 (1990) https://doi.org/10.1021/cr00102a003
  2. A. K. Vasudevan and J. J. Petrovic, Mater. Sci. Eng. A 155, 1 (1992) https://doi.org/10.1016/0921-5093(92)90308-N
  3. A. Heinrich, H. Griebmann, G. Behr, L. Ivanenko, J. Schumann, and H. Vinzelberg, Thin Solid Films 381, 287 (2001) https://doi.org/10.1016/S0040-6090(00)01758-2
  4. Y. Sakamaki, K. Kuwabara, J.-J. Gu, H. Inui, M. Yamaguchi, A. Yamamoto, and H. Obara, Mater. Sci. Forum 426-432, 1733 (2003) https://doi.org/10.4028/www.scientific.net/MSF.426-432.1733
  5. V. S. Nesphor and G. V. Samsonov, Phys. Met. Metallogr. 11, 146 (1960)
  6. U. Gottlieb, B. Lambert-Andron, F. Nava, M. Affronte, and O. Rouault, J. Appl. Phys. 78 3902 (1995) https://doi.org/10.1063/1.360707
  7. K. Kuwabara, H. Inui, and M. Yamaguchi, Intermetallic. 10, 129 (2002) https://doi.org/10.1016/S0966-9795(01)00119-4
  8. K. Kurokawa, H. Hara, H. Takahashi, and H. Takahashi, Vacuum 65, 497 (2002) https://doi.org/10.1016/S0042-207X(01)00462-6
  9. H. Gleiter, Nanostruct. Mater. 6, 3 (1995) https://doi.org/10.1016/0965-9773(95)00025-9
  10. J. Karch, R. Birringer, and H. Gleiter, Nature 330, 556 (1987) https://doi.org/10.1038/330556a0
  11. A. M. George, J. Iniguez, and L. Bellaiche, Nature 413, 54 (2001) https://doi.org/10.1038/35092530
  12. D. Hreniak and W. Strek, J. Alloys Compd. 341, 183 (2002) https://doi.org/10.1016/S0925-8388(02)00067-1
  13. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sens. Actuators. B 3, 147 (1991) https://doi.org/10.1016/0925-4005(91)80207-Z
  14. D. G. Lamas, A. Caneiro, D. Niebieskikwiat, R. D. Sanchez, D. Garcia, and B. Alascio, J. Magn. Mater. 241, 207 (2002) https://doi.org/10.1016/S0304-8853(02)00006-9
  15. E. S. Ahn, N. J. Gleason, A. Nakahira, and J. Y. Ying, Nano Lett. 1, 149 (2001) https://doi.org/10.1021/nl0055299
  16. C. Nahm, C. Kim, Y. Park, B. Lee, and B. Park, Electron. Mater. Lett. 4, 5 (2008)
  17. Y. Oh, J.-G. Lee, B. Kim, and B. Park, Electron. Mater. Lett. 4, 9 (2008)
  18. Z. Fang and J. W. Eason, Int. J. Refract. Met. Hard Mater. 13, 297 (1995) https://doi.org/10.1016/0263-4368(95)92675-A
  19. A. I. Y. Tok, L. H. Luo, and F. Y. C. Boey, Matr. Sci. Eng. A 383, 229 (2004) https://doi.org/10.1016/j.msea.2004.05.071
  20. M. Sommer, W. D. Schubert, E. Zobetz, and P. Warbichler, Int. J. Refract. Met. Hard Mater. 20, 41 (2002) https://doi.org/10.1016/S0263-4368(01)00069-5
  21. Z. A. Munir, I. J. Shon, and K. Yamazaki, U. S. Patent No. 5,794,113 (1998)
  22. I. J. Shon, Z. A. Munir, K. Yamazaki, and K. Shoda, J. Am. Ceram. Soc. 79, 1875 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08008.x
  23. I. J. Shon, H. C. Kim, D. H. Rho, and Z. A. Munir, Mater. Sci. Eng. A 269, 129 (1999) https://doi.org/10.1016/S0921-5093(99)00131-8
  24. I. J. Shon, D. H. Rho, H. C. Kim, and Z. A. Munir, J. Alloy. Compd. 322, 120 (2001) https://doi.org/10.1016/S0925-8388(01)01167-7
  25. I. J. Shon, D. H. Rho, and H. C. Kim, Metals and Materials 6, 533 (2000) https://doi.org/10.1007/BF03028095
  26. C. D. Park, H. C. Kim, I. J. Shon, and Z. A. Munir, J. Am. Ceram. Soc. 85, 2670 (2002)
  27. C. Suryanarayana and M. Grant Norton, X-ray Diffraction A Practical Approach, p. 213, Plenum Press, New York (1998)
  28. D. Y. Oh, H. C. Kim, J. K. Yoon, and I. J. Shon, J. Alloy. Compd. 395, 174 (2005) https://doi.org/10.1016/j.jallcom.2004.10.072
  29. K. Niihara, R. Morena, and D. P. H. Hasselman, J. Mater. Sci. Lett. 1, 12 (1982) https://doi.org/10.1007/BF00724706

Cited by

  1. Properties of nanostructured tungsten carbide and their rapid consolidation by pulsed current activated sintering vol.2010, pp.t139, 2009, https://doi.org/10.1088/0031-8949/2010/t139/014043
  2. Rapid synthesis and consolidation of nanostructured TaSi2–SiC–Si3N4 composite from mechanically activated powders by high-frequency induction-heated combus vol.504, pp.2, 2010, https://doi.org/10.1016/j.jallcom.2010.06.009