Scintillation Properties of a $Cs_2NaCeBr_6$ Crystal under X-ray, $\gamma$-ray and Proton Irradiations

Kim, Sung-Hwan;Moon, Jin-Ho;Kim, H.J.;Park, H.;Kang, Hee-Dong;Doh, Sih-Hong;Kim, Do-Sung;Kang, Sang-Jun

  • Published : 20090500

Abstract

In this paper, the crystal growth and scintillation properties of a $Cs_2NaCeBr_6$ crystal are presented. The crystal was grown with the Bridgman method by using a two-zone transparent furnace. The investigation of the scintillation properties of the crystal were performed under excitation by X-rays, $\gamma$-rays and protons at room temperature. When the $Cs_2NaCeBr_6$ crystal was excited by X-rays and protons, the emission spectrum of the crystal was observed in the range of 380 $\sim$ 460 nm, which is due to the 5d $\rightarrow$ 4f transitions of $Ce^{3+}$. The decay times of the $Ce^{3+}$ emission excited by $^{137}Cs$ 662 keV $\gamma$-rays. were about 140 ns (94 %) and 880 ns (6 %). The energy resolution of the crystal was obtained to be 6.7 % for the $^{137}Cs$ 662 keV $\gamma$-rays and the absolute light yield of the $Cs_2NaCeBr_6$ crystal was about 25,000 phs/MeV.

Keywords

References

  1. R. Hofstadter, Phys. Rev. 74, 100 (1948) https://doi.org/10.1103/PhysRev.74.100
  2. R. J. Hu, J. H. Kim, S. H. Ahn, B. Hong, S. J. Hong, M. Ito, T. I. Kang, B. I. Kim, H. C. Kim, K. B. Lee, K. S. Lee, S. Park, M. S. Ryu and K. S. Sim, J. Korean Phys. Soc. 50, 1482 (2007) https://doi.org/10.3938/jkps.50.1482
  3. B. Lee, K. W. Jang, D. H. Cho, S.-C. Chung, G.-R. Tack, G.-M. Eom and J. H. Yi, J. Korean Phys. Soc. 51, 1645 (2007) https://doi.org/10.3938/jkps.51.1645
  4. M. Korzhik, A. Fedorov, A. Annenkov, A. Borissevitch, A. Dossovitski, O. Missevitch and P. Lecoq, Nucl. Instr. Meth., Phy. Res. A 571, 122 (2007) https://doi.org/10.1016/j.nima.2006.10.044
  5. E. V. van Loef, W. M. Higgins, J. Glodo, A. V. Churilov and K. S. Shah, J. Cryst. Growth 310, 2090, (2008) https://doi.org/10.1016/j.jcrysgro.2007.11.168
  6. S. Baccaro, K. Blazek, F. de Notaristefani, P. Malyb, J. A. Mares, R. Pani, R. Pellegrini and A. Soluri, Nucl. Instr. Meth. Res. A 361, 209 (1995) https://doi.org/10.1016/0168-9002(95)00016-X
  7. G. Ren, L. Qin, S. Lu and H. Li, Nucl. Instr. Meth. Res. A 531, 560 (2004) https://doi.org/10.1016/j.nima.2004.05.083
  8. P. Dorenbos, J. C. van't Spijker, O. W. V. Frijns, C. W. E. van Eijk, K. Kramer, H. U. Gudel and A. Ellens, Nucl. Instr. Meth. Res. B 132, 728 (1997) https://doi.org/10.1016/S0168-583X(97)00490-4
  9. J. Kim, S. Ra, W. Kim, H. J. Kim, H. Park, S. H. Lee, H. Kang, S. Kim, D. Kim and S. Doh, J. Korean Phys. Soc. 50, 1514 (2007) https://doi.org/10.3938/jkps.50.1514
  10. R. Brun, A. Gheata and M. Gheata, Nucl. Inst. Meth. Phys. Res. 502, 676 (2003) https://doi.org/10.1016/S0168-9002(03)00541-2
  11. M. J. Kim, H. D. Kang, H. J. Kim, H. Park and S. H. Kim, J. Nucl. Sci. Tech. Suppl. 5, 586 (2008)