DOI QR코드

DOI QR Code

A U–Pb geochronological study of migmatitic gneiss in the Busan gneiss complex, Gyeonggi massif, Korea

Horie, Kenji;Tsutsumi, Yukiyasu;Kim, Hyeon-Cheol;Cho, Moon-Sup;Hidaka, Hiroshi;Terada, Kentaro

  • Published : 20090900

Abstract

Zircon U–Pb geochronology was applied to a migmatitic gneiss in the Busan gneiss complex, Gyeonggi massif, Korea. $^{207}Pb/^{206}Pb$ ages of concordant zircon grains reveal that overgrowth rims with Th/U ratios lower than 0.1 formed at 1937 ${\pm}$ 6 Ma during the migmatization and mantled the inherited cores of ca. 3500–2200Ma. The $^{207}Pb/^{206}Pb$ age of the rims is consistent with the monazite Th–total Pb age (ca. 1938 Ma), suggesting that the rims are the product of Paleoproterozoic regional metamorphism. Our zircon age data are not sufficient for discerning the tectonic affinity of the Busan gneiss complex belonging to either Gyeonggi or Yeongnam massif. However, consistency of these ages with the ca. 1930 Ma Pb–Pb age reported from the Bagdalryeong gneiss complex, Gyeonggi massif, supports the tectonic model that the Busan gneiss complex is a part of the Gyeonggi massif. Discordant U–Pb data obtained from the zircon rims (293 ${\pm}$ 31 Ma) and the monazite Th–total Pb age (ca. 289 Ma) suggest that the Busan gneiss complex was affected by the Early Permian regional metamorphism during the Ogcheon (Okcheon) Orogeny. Therefore, we conclude that the Busan gneiss complex is a part of the Gyeonggi massif occurring as either a basement rock of the Ogcheon (Okcheon) metamorphic rocks, or a tectonically emplaced, exotic piece affected by the Early Permian Ogcheon (Okcheon) metamorphism. In addition, our U–Pb data suggest that the Busan complex is possibly linked with the Hida–Oki terrane in Japanese Islands.

Keywords

References

  1. Adachi, M., Suzuki, K., and Chwae, U.C., 1996, CHIME age determination of metamorphic rocks in the Okchon belt, Korea. 103th Annual Meeting of the Geological Society of Japan (abstract), Sendai, p. 80. (in Japanese)
  2. Arakawa, Y., Saito, Y., and Amakawa, H., 2000, Crustal development of the Hida belt, Japan: Evidence from Nd–Sr isotopic and chemical characteristics of igneous and metamorphic rocks. Tectonophysics, 328, 183–204 https://doi.org/10.1016/S0040-1951(00)00183-9
  3. Banno, S. and Nakajima, T., 1992, Metamorphic belts of Japanese Islands. Annual Review of Earth and Planetary Sciences, 20, 159–179 https://doi.org/10.1146/annurev.ea.20.050192.001111
  4. Biao, S., Nutman, A.P., Liu, D., and Jiashan, W., 1996, 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Research, 78, 79–94 https://doi.org/10.1016/0301-9268(95)00070-4
  5. Chen, J. and Jahn, B.M., 1998, Crustal evolution of southeastern China: Nd and Sr isotopic evidence. Tectonophysics, 284, 101–133 https://doi.org/10.1016/S0040-1951(97)00186-8
  6. Cheong, C.S., Kwon, S.T., and Park, K.H., 2000, Pb and Nd isotopic constraints on Paleoproterozoic crustal evolution of the northeastern Yeongnam massif, South Korea. Precambrian Research, 102, 207–220 https://doi.org/10.1016/S0301-9268(00)00066-8
  7. Cheong, C.S., Jeong, G.Y., Kim, H., Lee, S.H., Choi, M.S., and Cho, M., 2003, Early Permian peak metamorphism recorded in U–Pb system of black slates from the Ogcheon metamorphic belt, South Korea, and its tectonic implication. Chemical Geology, 193, 81–92 https://doi.org/10.1016/S0009-2541(02)00227-9
  8. Cherniak, D.J. and Watson, E.B., 2003, Diffusion in zircon. In: Hanchar, J.M. and Hoskin, P.W.O. (eds.), Zircon, Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, Washington, DC, 53, 113–143
  9. Cho, M. and Kim, H., 2005, Metamorphic evolution of the Ogcheon belt, Korea: A review and new age constraints. International Geology Review, 47, 41–57 https://doi.org/10.2747/0020-6814.47.1.41
  10. Cho, M., Kwon, S.T., Ree, J.H., and Nakamura, E., 1995, High-pressure amphibolite of the Imjingang belt in the Yeoncheon-Cheongok area. Journal of Petrological Society of Korea, 4, 1–19. (in Korean with English abstract)
  11. Cho, M., Kim, H., Wan, Y., and Liu, D., 2004, U–Pb zircon ages of a granitic gneiss boulder in metadiamictite from the Ogcheon metamorphic belt, Korea. Geosciences Journal, 8, 355 –362
  12. Cho, M., Kim, Y., and Ahn, J., 2007, Metamorphic evolution of the Imjingang belt, Korea: Implications for Permo-Triassic collisional orogeny. International Geology Review, 49, 30–51 https://doi.org/10.2747/0020-6814.49.1.30
  13. Chough, S.K., Kwon, S.T., Ree, J.H., and Choi, D.K., 2000, Tectonic and sedimentary evolution of the Korean peninsula: A review and new view. Earth-Science Reviews, 52, 175–232 https://doi.org/10.1016/S0012-8252(00)00029-5
  14. laesson, S., Vetrin, V., Bayannova, T., and Downes, H., 2000, U–Pb zircon ages from a Devonian carbonatite dyke, Kola Peninsula, ussia: a record of geological evolution from the Archaean to the Palaeozoic. Lithos, 51, 95–108 https://doi.org/10.1016/S0024-4937(99)00076-6
  15. Claoue-Long, J.C., Compston, W., Roberts, J., and Fanning, C.M., 1995, Two Carboniferous ages: a comparison of SHRIMP zircon dating with conventional zircon ages and $^{40}Ar/^{39}$analysis. In:Berggren, W.A., Kent, D.V., Aubrey, M.P. and Hardenbol, J. (eds.), Geochronology Time Scales and Global Stratigraphic Correlation, SEPM (Society for Sedimentary Geology) Special Publication, vol. 54, 3–21
  16. Cliff, R.A., Jones, G., Choi, W.C., and Lee, T.J., 1985, Strontium isotopic equilibration during metamorphism of tillites from the Ogcheon Belt, South Korea. Contributions to Mineralogy and Petrology, 90, 346–352 https://doi.org/10.1007/BF00384713
  17. Cluzel, D., 1991, Late Paleozoic to early Mesozoic geodynamic evolution of the Circum-Pacific orogenic belt in South Korea and Southwest Japan. Earth and Planetary Science Letters, 108, 289–305
  18. Cluzel, D., Cadet, J.P., and Lapierre, H., 1990, Geodynamics of the Ogcheon belt (South Korea). Tectonophysics, 183, 41–56 https://doi.org/10.1016/0040-1951(90)90187-D
  19. Cluzel, D., Jolivet, L., and Cadet, J.P., 1991, Early middle Paleozoic intraplate orogeny in the Ogcheon belt (South Korea): a new insight on the Paleozoic buildup of east Asia. Tectonics 10, 1130–1151 https://doi.org/10.1029/91TC00866
  20. Compston, W., Williams, I.S., and Meyer, C.E., 1984, U–Pb geochronology of zircons from lunar breccia 73217 using a sensitive high-mass resolution ion microprobe. Journal of Geophysical Research, B89, 525–534
  21. Davis, D.W., 1982, Optimum linear regression and error estimation applied to U–Pb data. Canadian Journal of Earth Sciences, 19, 2141–2149 https://doi.org/10.1139/e82-188
  22. Ernst, W.G., Cao, R., and Jiang, J., 1988, Reconnaissance study of Precambrian metamorphic rocks, northeastern Sino-Korean shield, People's Republic of China. Geological Society of America Bulletin, 100, 692–701 https://doi.org/10.1130/0016-7606(1988)100<0692:RSOPMR>2.3.CO;2
  23. Ernst, W.G. and Liou, J.G., 1995, Contrasting plate .tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belt. Geology, 23, 353–356 https://doi.org/10.1130/0091-7613(1995)023<0353:CPTSOT>2.3.CO;2
  24. Han, R., Lee, J.H., and Park, Y.D., 1996, The Busan gneiss complex: a metamorphic core complex? 51st Annual Meeting of the Geo logical Society of Korea (Abstract Volume), Pusan, 25–26, 75.(in Korean)
  25. Hiroi, Y., 1978, Geology of the Unazuki district in the Hida metamorphic terrane, central Japan. The Journal of the Geological Society of Japan, 84, 521−530. (in Japanese with English abstract) https://doi.org/10.5575/geosoc.84.521
  26. Hiroi, Y., 1981, Subdivision of the Hida metamorphic complex, central Japan, and its bearing on the geology of the Far East in pre-Sea of Japan time. Tectonophysics, 76, 317–333 https://doi.org/10.1016/0040-1951(81)90103-7
  27. Hiroi, Y., 1983, Progressive metamorphism of the Unazuki pelitic schists in the Hida terrane, central Japan. Contributions to Mineralogy and Petrology, 82, 334-350 https://doi.org/10.1007/BF00399711
  28. Horie, K., Hidaka, H., and Gauthier-Lafaye, F., 2006, Elemental distribution in zircon:Alteration and radiation-damage effects. Physics and Chemistry of the Earth, 31, 587–592 https://doi.org/10.1016/j.pce.2006.01.001
  29. Ihm, M.H. and Chang, T.W., 1993, Geological structures and deformation history of the Busan area in the Northeastern part of the Ogcheon structural belt, Korea. Journal of the Geological Society of Korea 29, 540–550. (in Korean with English abstract)
  30. shiwatari, A. and Tsujimori, T., 2003, Paleozoic ophiolites and blueschists in Japan and Russian Primorye in the tectonic framework of East Asia: a synthesis. The Island Arc, 12, 190–206 https://doi.org/10.1046/j.1440-1738.2003.00390.x
  31. Isozaki, Y., 1997, Contrasting two types of orogen in Permo-Triassic Japan: Accretionary versus collisional. The Island Arc, 6, 2–24 https://doi.org/10.1111/j.1440-1738.1997.tb00038.x
  32. Kang, J.H., 1994, Geological structure and tectonics of the Ogcheon zone in the Chungju Jangseonri area, South Korea. Journal of Science (Hiroshima University), C10, 11–23
  33. Kim, B.C., Choi, S.J., Suzuki, K., Adachi, M., Obayashi, T., and Yu, K.M., 1997, Provenance of Cretaceous sandstones in the southeastern Yongdong Basin, Korea: CHIME geochronology of detrital monazites. Geosciences Journal, 1, 3749
  34. Kim, H., Cheong, C.S., and Cho, M., 2007, The effect of allanite inclusions on U–Pb step-leaching ages and Sm–Nd isotope systematics of garnet from the Ogcheon metamorphic belt, South Korea. Chemical Geology, 236, 27–41 https://doi.org/10.1016/j.chemgeo.2006.08.014
  35. Kim, K.Y., Park, B.S., and Lee, H.K., 1967, Geologic map of the Jecheon Sheet (1:50,000). Geological Survey of Korea, Seoul. (in Korean with English summary)
  36. Kim, S.W., Oh, C.W., Williams, I.S., Rubbato, D., Ryu, I.C., Rajesh, V.J., Kim, C.B., Guo, J., and Zhai, M., 2006, Phanerozoic highpressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Block, South Korea: implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, 92, 357–377 https://doi.org/10.1016/j.lithos.2006.03.050
  37. Kinny, P.D., Wijbrans, J.R., Froude, D.O., Williams, I.S., and Compston, W., 1990, Age constraints on the geological evolution of the Narryer Gneiss Complex, Western Australia. Australian Journal of Earth Sciences, 37, 51–69 https://doi.org/10.1080/08120099008727905
  38. Koh, H.J., Lee, B.J., and Lee, S.R., 2004, Geological report of the Goyang sheet (1:50,000). Korea Institute of Geoscience and Mineral Resources, 71 p. (in Korean with English summary)
  39. Kwon, Y.W., Oh, C.W., and Kim, H.S., 2003, Granulite-facies metamorphism in the Punggi area, northeastern Yeongnam Massif, Korea and its tectonic implications for east Asia. Precambrian Research, 122, 253–273 https://doi.org/10.1016/S0301-9268(02)00214-0
  40. Lee, S.R., Cho, M., Yi, K., and Stern, R.A., 2000, Early Proterozoic granulites in Central Korea: Tectonic correlation with Chinese cratons. Journal of Geology, 108, 729–738 https://doi.org/10.1086/317951
  41. Lee, S.R., Cho, M., Hwang, J.H., Lee, B., Kim, Y., and Kim, J., 2003, Crustal evolution of the Gyeonggi Block, South Korea: Nd isotopic evidence and implications for continental growths of East Asia. Precambrian Research, 121, 25–34 https://doi.org/10.1016/S0301-9268(02)00196-1
  42. Lee, S.R., Cho, D.L., Cho, M., Wu, F.Y., Kim, H., and Jeon, H., 2007, Hf isotopic evidence for Paleoarchean (>3.5 Ga) crustal components in the Korean Peninsula. Geosciences Journal, 11, 271–278 https://doi.org/10.1007/BF02857045
  43. Li, Z.X., 1994, Collision between the north and south China blocks:A crustal-detachment model for suturing in the region east of the Tanlu fault. Geology, 22, 739–742 https://doi.org/10.1130/0091-7613(1994)022<0739:CBTNAS>2.3.CO;2
  44. Liou, J.G., Zhang, R.Y., and Ernst, W.G., 1994, An introduction to ultrahigh-P metamorphism. The Island Arc, 3, 1–24 https://doi.org/10.1111/j.1440-1738.1994.tb00001.x
  45. Ludwig, K.R., 2001, SQUID Version: 1.03, A User's Manual, Berkeley Geochronology Center Special Publication, No. 2, 19 p
  46. Ludwig, K.R., 2003, User's Manual for Isoplot 3.00, Berkeley Geochronology Center Special Publication, No. 4, 70 p
  47. Luo, Y., Sun, M., Zhao, G.C., Li, S.Z., Xu, P., Ye, K., and Xia, X.P., 2004, LA–ICP–MS U–Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton:constraints on the evolution of the Jiao-Liao-Ji Belt. Precambrian Research, 134, 349–371 https://doi.org/10.1016/j.precamres.2004.07.002
  48. Maas, R., Kinny, P.D., Williams, I.S., Froude, D.O., and Compston, W., 1992, The Earth's oldest known crust: a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica et Cosmochimica Acta, 56, 1281–1300 https://doi.org/10.1016/0016-7037(92)90062-N
  49. Montel, J.M., Foret, S., Veschambre, M., Nicollet, Ch., and Provost, A., 1996. Electron microprobe dating of monazite. Chemical Geology 131, 37–53 https://doi.org/10.1016/0009-2541(96)00024-1
  50. Na, K.C., 1987, Petrologic study on the Busan migmatitic gneiss in the northeastern margin of the Ogcheon zone. Journal of Korean Institute of Mining Geology 20, 235–246. (in Korean with English abstract)
  51. Nakajima, T., 1997, Regional metamorphic belts of the Japanese Islands. The Island Arc, 6, 69–90 https://doi.org/10.1111/j.1440-1738.1997.tb00041.x
  52. Oh, C.W., 2006, A new concept on tectonic correlation between Korea, China and Japan:Histories from the late Proterozoic to Cretaceous. Gondwana Research, 9, 47–61 https://doi.org/10.1016/j.gr.2005.06.001
  53. Oh, C.W. and Kusky, T., 2007, The late Permian to Triassic Hongseong-Odesan Collision belt in South Korea, and its tectonic correlation with China and Japan. International Geology Review, 49, 636–657 https://doi.org/10.2747/0020-6814.49.7.636
  54. Paces, J.B. and Miller, J.D., 1993, Precise U–Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota:geochronological insights to physical, petrogenetic, paleomagnetic and tectonomagmatic processes associated with the 1.1 Ga midcontinent rift system. Journal of Geophysical Research, 98, 13997–14013 https://doi.org/10.1029/93JB01159
  55. Park, K.H, Cheong, C.S., Lee, K.S., and Chang, H.W., 1993, Isotopic composition of lead in Precambrian granitic rocks of the Taebaeg Area. Journal of the Geological Society of Korea, 29, 387–395. (in Korean with English abstract)
  56. Ree, J.H., Cho, M., Kwon, S.T., and Nakamura, E., 1996, Possible eastward extension of Chinese collision belt in South Korea: The Imjingang belt. Geology, 24, 1071–1074 https://doi.org/10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
  57. Ree, J.H., Kwon, S.H., Park, Y., Kwon, S.T., and Park, S.H., 2001, Pretectonic and posttectonic emplacements of the granitoids in the south central Okchon belt, South Korea: Implications for the timing of strike-slip shearing and thrusting. Tectonics, 20, 850–867 https://doi.org/10.1029/2000TC001267
  58. Sagong, H. and Kwon, S.T., 1998, Pb–Pb age and uplift history of the Busan gneiss complex in the Okchon Belt, Korea: a comparison with the Bagdalryeong gneiss complex in the Kyongki Massif. Geosciences Journal, 2, 99–106 https://doi.org/10.1007/BF02910488
  59. Sagong, H., Cheong, C.S., and Kwon, S.T., 2003, Paleoproterozoic orogeny in South Korea: evidence from Sm–Nd and Pb stepleaching garnet ages of Precambrian basement rocks. Precambrian Research, 122, 1–21
  60. Sano, Y., Hidaka, H., Terada, K., Shimizu, H., and Suzuki, M., 2000, Ion microprobe U–Pb zircon geochronology of the Hida gneiss. Finding of the oldest minerals in Japan. Geochemical Journal, 34, 135–153 https://doi.org/10.2343/geochemj.34.135
  61. Schiotte, L., Compston, W., and Bridgwater, D., 1989, U–Th–Pb ages of single zircons in Archean supracrustals from Nain Province, Labrador, Canada. Canadian Journal of Earth Sciences, 26, 2636–2644 https://doi.org/10.1139/e89-224
  62. Sohma, T. and Kunugiza, K., 1993, The formation of the Hida nappe and the tectonics of Mesozoic sediments: the tectonic evolution of the Hida region, central Japan. The memoirs of the Geological Society of Japan, 42, 1–20. (in Japanese with English abstract)
  63. Song, Y.S., Park, K.H., Park, M.E., Cao, L., Jin, W., Zhang, X., and Rhoo, H.J., 2001, Petrological, geochemical and geochronological studies of Precambrian basement in northeast Asia region: 2. Zircon ages of some metamorphic rocks from Gyeonggi massif. Journal of the Petrological Society of Korea, 10, 95–105. (in Korean with English abstract)
  64. Stacey, J.S. and Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by a two-stage model. Earth and Planetary Science Letters, 26, 207–221 https://doi.org/10.1016/0012-821X(75)90088-6
  65. Suzuki, K. and Adachi, M., 1991, Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, Northeast Japan, revealed by the chemical Th–U–total Pb isochron ages of monazite, zircon and xenotime. Geochemical Journal 25, 357–376 https://doi.org/10.2343/geochemj.25.357
  66. Suzuki, K. and Adachi, M., 1994, Middle Precambrian detrital monazite and zircon from the Hida gneiss on Oki-Dogo Island, Japan:their origin and implications for the correlation of basement gneiss of southwest Japan and Korea. Tectonophysics 235, 277–292 https://doi.org/10.1016/0040-1951(94)90198-8
  67. Tsujimori, T., 2002, Prograde and retrograde P-T paths of the late Paleozoic glaucophane eclogite from the Renge metamorphic belt, Hida mountains, southwestern Japan. International Geology Review, 44, 797–818 https://doi.org/10.2747/0020-6814.44.9.797
  68. Tsujimori, T., Liou, J.G., Ernst, W.G., and Itaya, T., 2006, Triassic paragonite- and garnet-bearing epidote-amphibolite from the Hida mountains, Japan. Gondwana Research, 9, 171–179
  69. Tsutsumi, Y., Yokoyama, K., Horie, K., Terada, K., and Hidaka, H., 2006, SHRIMP U–Pb dating of detrital zircons in paragneiss from Oki-Dogo Island, western Japan. Journal of Mineralogical and Petrological Sciences, 101, 289–298 https://doi.org/10.2465/jmps.060127
  70. Turek, A. and Kim, C.B., 1995, U–Pb zircon ages of Mesozoic plutions in the Damyang-Geochang area, Ryeongnam massif, Korea. Geochemical Journal, 29, 243–258 https://doi.org/10.2343/geochemj.29.243
  71. Turek, A. and Kim, C.B., 1996, U–Pb zircon ages for Precambrian rocks in southwestern Ryeongnam and southwestern Gyeonggi massifs, Korea. Geochemical Journal, 30, 231–249 https://doi.org/10.2343/geochemj.30.231
  72. Williams, I.S., 1998, U–Th–Pb geochronology by ion microprobe. In: McKibben, M.A., Shanks, W.C. (eds.), Applications of Microanalytical Techniques to Understanding Mineralizing Processes, Reviews in Economic Geology, 7, 1–35
  73. Williams, I.S. and Claesson, S., 1987, Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high grade paragneisses from the Seve Nappes, Scandinavian Caledonides:II. Ion microprobe zircon U–Th–Pb. Contributions to Mineralogy and Petrology, 97, 205–217 https://doi.org/10.1007/BF00371240
  74. Williams, I.S., Cho, D.L., and Kim, S.W., 2009, Geochronology, and geochemical and Nd–Sr isotopic characteristics, of Triassic plutonic rocks in the Gyeonggi Massif, South Korea:Constraints on Triassic post-collisional magmatism. Lithos, 107, 239–256 https://doi.org/10.1016/j.lithos.2008.10.017
  75. Yin, A. and Nie, S., 1993, An indentation model for the North and South China collision and the development of the Tan-Lu and Honam fault systems, eastern Asia. Tectonics, 12, 801–813 https://doi.org/10.1029/93TC00313
  76. Zhai, M., Ni, Z., Oh, C.W., Guo, J., and Choi, S.G., 2005, SHRIMP zircon age of a Proterozoic rapakivi granite batholith in the Gyeonggi Block (South Korea) and its geological implications. Geological Magazine, 142, 23–30 https://doi.org/10.1017/S001675680400994X
  77. Zhai, M., Guo, J., Li, Z., Chen, D., Peng, P., Li, T., Hou, Q., and Fan, Q., 2007, Linking the Sulu UHP belt to the Korean Peninsula: Evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins. Gondwana Research, 12, 388–403 https://doi.org/10.1016/j.gr.2007.02.003
  78. Zhao, G., Cao, L., Wilde, S.A., Sun, M., Choe, W.J., and Li, S.Z., 2006, Implications based on the first SHRIMP U–Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth and Planetary Science Letters, 251, 365–379 https://doi.org/10.1016/j.epsl.2006.09.021

Cited by

  1. In-situ analyses of zircon and other minerals: Contributions to the Asian geology and tectonics vol.13, pp.3, 2009, https://doi.org/10.1007/s12303-009-0020-6
  2. 명창-원주 지역의 경기육괴 기반암 편마암 복합체에 대한 SHRIMP 저어콘 연대 측정 vol.20, pp.2, 2009, https://doi.org/10.7854/jpsk.2011.20.2.099
  3. The Okcheon Supergroup in the Lake Chungju area, Korea: Neoproterozoic volcanic and glaciogenic sedimentary successions in a rift basin vol.16, pp.3, 2009, https://doi.org/10.1007/s12303-012-0031-6
  4. Japan and the 250 Ma Continental Collision Belt in East Asia: Yaeyama Promontory Hypothesis Revisited vol.121, pp.3, 2009, https://doi.org/10.5026/jgeography.121.460
  5. 한반도 선캠브리아 지각진화사 vol.21, pp.2, 2009, https://doi.org/10.7854/jpsk.2012.21.2.089
  6. Tectonic linkage between the Korean Peninsula and mainland Asia in the Cambrian: Insights from U-Pb dating of detrital zircon vol.368, pp.None, 2009, https://doi.org/10.1016/j.epsl.2013.03.003
  7. Extensional deformation along the southern boundary of the Gyeonggi Massif, South Korea: structural characteristics, age constraints, and tectonic implications vol.103, pp.3, 2009, https://doi.org/10.1007/s00531-013-0985-2
  8. 광주전단대 : 영남육괴와 옥천변성대의 지구조적 경계? vol.23, pp.1, 2009, https://doi.org/10.7854/jpsk.2014.23.1.017
  9. Decoding Neoarchaean to Palaeoproterozoic tectonothermal events in the Rangnim Massif, North Korea: regional correlation and broader implications vol.59, pp.1, 2017, https://doi.org/10.1080/00206814.2016.1198995
  10. 쇄설성 저어콘의 SHRIMP U-Pb 연령으로 한정한 평창지역 방림층군의 퇴적시기 vol.26, pp.1, 2009, https://doi.org/10.7854/jpsk.2017.26.1.73
  11. Zircon U-Pb age of Paleoproterozoic granite gneiss from the Ogcheon Belt in the Geumsan area, South Korea vol.127, pp.2, 2009, https://doi.org/10.5575/geosoc.2020.0057
  12. Regional variations of sulfur isotope compositions for metallic deposits in South Korea vol.71, pp.3, 2021, https://doi.org/10.1111/rge.12259
  13. Zircon UPbHf and geochemical analyses of paragneiss and granitic gneiss from Oki-Dogo Island, Southwest Japan and its tectonic implications vol.396, pp.None, 2009, https://doi.org/10.1016/j.lithos.2021.106217