Characterization of Symptom and Determination of Tissue Critical Concentration for Diagnostic Criteria in 'Maehyang' Strawberry as Influenced by Phosphorus Concentrations in the Fertigation Solution

'매향' 딸기의 인산 영양진단을 위한 결핍증상 및 식물체 내 한계농도

Choi, Jong-Myung;Jeong, Suck-Kee;Ko, Kwan-Dal
최종명;정석기;고관달

  • Published : 2009.03.31

Abstract

Objective of this research was to investigate the effect of phosphorus concentrations in the fertilizer solution on growth and development of nutrient deficiency in 'Maehyang' strawberry (Fragaria ${\times}$ ananassa Duch.). The growth was seriously restricted in P deficient plants. The young leaves were small and dull green in color. Brown areas developed on the margin of mature leaves and enlarged rapidly. The margins of lower leaves became scorched and leaves died prematurely. The growth of 'Maehyang' strawberry was suppressed when P concentration was lower than 0.5 mM or higher than 4 mM at 120 days after transplanting. The response in dry weight and tissue P contents based on dry weight of above ground tissue to the elevated phosphorus concentrations were cubic and quadratic with the equations of y=1.1932+7.205x-2.65x$^{2}$+0.243x$^{3}$ (R$^{2}$=0.6001$^{***}$) and y=0.0598+0.2894x-0.019x$^{2}$ (R$^{2}$=0.9762$^{***}$), respectively. From these equations, the optimal P contents in the above ground tissues are between 0.3 to 0.75%. The trends in fresh weight and P concentrations in petiole sap were cubic and linear, respectively, with the optimal concentration range of 190 to 250 mg.kg$^{-1}$ in petiole sap for commercial production of 'Maehyang' strawberry.

인산의 시비농도를 인위적으로 조절하여 '매향' 딸기를 재배하면서 시비수준이 생육에 미치는 영향을 구명하고 생육을 우수하게 유지할 수 있는 식물체의 한계농도를 밝히기 위하여 본 연구를 수행하였다. 또한 인산 결핍에 의한 생리장해의 특징을 밝혔다. '매향' 딸기에서 인산이 결핍되면 초기에 정상엽보다 크기가 작아졌고, 증상이 심화되면 하위엽이 구릿빛으로 변하면서 선단부가 괴사하였다. 정식 120일 후에 지상부의 생장을 조사한 결과 0.5mM과 1mM 인산 시비구에서 생육이 우수하였고 인산 무시비나 4mM 이상의 시비구에서 생장이 저조하였다. 인산 시비농도에 대한 건물중은 3차 곡선회귀적 반응을 보였으며 최대 건물중을 생산한 처리보다 10% 억제된 처리의 인산 함량을 최저 한계점으로 설정하면 딸기 '매향'의 재배에서 허용 가능한 식물체 내 인산 함량은 0.3-0.75% 범위였고, 1.75mM이 '매향' 재배를 위한 최적 인산 시비농도였다. 지상부 생체중은 1-3차항 회귀곡선 중 3차항 회귀곡선의 R$^{2}$값(0.4302)과 F값(31.93)이 가장 높아 최적 함수라고 판단하였다. 정점의 생체중은 식물체 당 31g였고, 최대 생장량의 90%에 해당하는 생체중 27.9g을 생산할 때의 엽병 추출액의 PO$_{4}$-P농도는 약 190mg.kg$^{-1}$였다. 또한 인산 시비량 과다로 최대 생장량보다 10% 감소한 생체중 27.9g의 엽병 추출액 내 PO$_{4}$-P 농도를 생장억제를 억지할 수 있는 한계점으로 판단하면 엽병 추출액의 인산 농도가 190-250mg.kg$^{-1}$의 범위에 포함되도록 시비해야 할것으로 판단하였다.

Keywords

References

  1. Bennett, W.F. 1993. Nutrient deficiencies and toxicities in crop plants. AS Press, St. Paul, Minn
  2. Bouma, D. 1983. Diagnosis of mineral deficiencies in plant tests, p. 120-146. In: Encyclopedia of plant physiology Vol. 15A. Springer-Verlag, Berlin
  3. Chapman, H.D. and P.F. Pratt. 1961. Method of analysis for soil, plants and waters. Univ. of Calif., Div. Agr. Sci., Berkeley, CA
  4. Choi, J.M. 2007. Influence of pre-plant micronutrient sources and post-plant NH$_4$:NO$_3$ ratios in fertilizer solution on growth and nutrient uptake of marigold in plug culture. Hort. Environ. Biotechnol. 48:257-264
  5. Choi, J.M. and J.Y. Park. 2007. Growth, deficiency symptom and tissue nutrient contents of leaf perilla (Perilla frutesens Biitt) influenced by phosphorus concentrations in fertigation solution. J. Bio-Environ. Control 16:358-364
  6. Eastin, E.F. 1978. Total nitrogen determination for plant material containing nitrate. Anal. Biochem. 85:591-594 https://doi.org/10.1016/0003-2697(78)90259-2
  7. Hanan, J.J. 1998. Greenhouses: Advanced technology for protected horticulture. Prentice Hall, Upper Saddle River, N.J
  8. Hoagland, D.R. and D.I. Arnon. 1950. The water culture method for growing plants without soil. Univ. of Calif. Agri. Exp. Sta. Circular 347
  9. Jeong, S.K., J.M. Choi, K.H. Cha, H.J. Chung, and K.S. Seo. 2000. Deficiency symptom, growth characteristics, and nutrient uptake of 'Nyoho' strawberry as affected by controlled phosphorus concentrations in fertilizer solution. J. Kor. Soc. Hort. Sci. 41:345-349
  10. Kim, J.M., J.M. Choi, H.J. Chung, and Y.G. Choi. 2005. Effect of phosphorus concentration in fertigation solution on growth and nutrient uptake of cut chrysanthemum 'Biarritz'. J. Kor. Flower Res. Soc. 13:152-160
  11. Kim, T.I., W.S. Jang, J.H. Choi, M.H. Nam, W.S. Kim, and S.S. Lee. 2004. Breeding of 'Maehyang' strawberry for forcing culture. Kor. J. Hort. Sci. & Tech. 22:434-437
  12. Marschner, H. 1995. Mineral nutrition of higher plants. 2nd ed. Academic Press Inc., San Diego, USA
  13. Mengel, K. and E.A. Kirkby. 1987. Principles of plant nutrition. 4th ed. Int'l. Potash Inst., Bern, Switzerland
  14. Nelson, P.V. 2003. Greenhouse operation and management. 6th ed. Prentice Hall, N.J
  15. Ohki, K. 1984. Zinc nutrition related to critical deficiency and toxicity levels for sorghums. Agron. J. 76:253-256 https://doi.org/10.2134/agronj1984.00021962007600020019x
  16. RDA. 2003. Agricultural science technique research investigation and analysis standard. 4th ed. Suwon, Korea
  17. Ulrich, A. 1993. Potato, p. 149-156. In: W.F. Bennett (ed.). Nutrient deficiencies & toxicities in crop plants. APS Press, St. Paul, Minnesota
  18. Warncke, P.D. 1986. Analyzing greenhouse growth media by the saturation extraction method. HortScience 211:223-225
  19. Walworth, J.L. and M.E. Sumner. 1986. The diagnosis and recommendation integrated system (DRIS). Advances in Soil Sci. 6:149-168. Springer-Verlag, New York
  20. Walworth, J.L., W.S. Letzsch, and M.E. Sumner. 1986. Use of boundary lines in establishing diagnostic norm. Soil Sci. Soc. Amer. J. 50:122-128