DOI QR코드

DOI QR Code

The electrical conductivity properties of polythiophene/$TiO_2$ nanocomposites prepared in the presence of surfactants

Uygun, Aysegul;Turkoglu, Orhan;Sen, Songul;Ersoy, Ersay;Yavuz, Ayse Gul;Batir, Gokhan Guven

  • Published : 20090700

Abstract

A composite of polythiophene (PT) and nano-titanium dioxide ($TiO_2$), possessing core-shell structure, was synthesized via oxidative polymerization of thiophene using $FeCl_3$ in the presence of three different surfactants: anionic, cationic, and nonionic. The morphology of the obtained composite materials was investigated by SEM, proving the core-shell structure of the prepared nanocomposite. The formation and thermal stability of the PT onto $TiO_2$ nanoparticles were confirmed by FTIR and TGA analyses, respectively. XRD data show all of composite materials were amorphous structures. The electrical properties of the nanocomposites were investigated in the presence of surfactant materials, and the best semiconductor property was observed for PT/$TiO_2$-anionic system. This difference in the conductivity has been attributed to differences in the stability of the composites.

Keywords

References

  1. Q.-T. Vu, M. Pavlik, N. Hebestreit, J. Pfleger, U. Rammelt, W. Plieth, Electrochim. Acta 51 (2005) 1117 https://doi.org/10.1016/j.electacta.2005.05.052
  2. Q.-T. Vu, M. Pavlik, N. Hebestreit, U. Rammelt, React. Funct. Polym. 65 (2005) 69 https://doi.org/10.1016/j.reactfunctpolym.2004.11.011
  3. J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, A.B. Holmes, Appl. Phys. Lett. 68 (1996) 3120 https://doi.org/10.1063/1.115797
  4. K. Takahashi, Y. Takano, T. Yamaguchi, J.-I. Nakamura, C. Yokoe, K. Murata, Synth. Met. 155 (2005) 51 https://doi.org/10.1016/j.synthmet.2005.05.025
  5. P. Chandrasekhar, Conducting Polymers, Fundamentals and Applications, Kluwer Academic Publishers, Boston, Dordrecht, London, 1999
  6. D. Fichou, Handbook of Oligo- and Polythiophene, Wiley-VCH, Weinheim, New York, Chichester, Brisbane, Singapore, Toronto, 1999
  7. J. Wang, B. Zou, X. Hong, D.M. Collard, Synth. Met. 113 (2000) 223 https://doi.org/10.1016/S0379-6779(00)00185-5
  8. L.H.M. Fonseca, A.W. Rinaldi, A.F. Rubira, L.F. C´ otica, S.N. de Medeiros, A. Paesano Jr., I.A. Santos, E.M. Girotto, Mater. Chem. Phys. 97 (2006) 252 https://doi.org/10.1016/j.matchemphys.2005.08.007
  9. J.C. Xu, W.M. Liu, H.L. Li, Mater. Sci. Eng. Biomimetic Supramolecular Syst. C 25 (4) (2005) 444 https://doi.org/10.1016/j.msec.2004.11.003
  10. A. Gok, M. Omastova, A.G. Yavuz, Synth. Met. 157 (1) (2007) 23 https://doi.org/10.1016/j.synthmet.2006.11.012
  11. J.J. Tindale, H. Holm, M.S. Workentin, O.A. Semenikhin, J. Electroanal. Chem. 612 (2008) 219 https://doi.org/10.1016/j.jelechem.2007.10.003
  12. R.A. Singh, R.K. Gupta, S.K. Singh, Bull. Mater. Sci. 28 (2005) 423 https://doi.org/10.1007/BF02711231
  13. E. Ando, S. Onodera, M. Lino, O. Ito, Carbon 39 (2001) 101 https://doi.org/10.1016/S0008-6223(00)00098-1
  14. Q.-T. Trung Vu, M. Pavlik, N. Hebestreit, J. Pfleger, U. Rammelt, W. Plieth, Electrochim. Acta 51 (2005) 1117 https://doi.org/10.1016/j.electacta.2005.05.052
  15. A.R. West, Basic Solid State Chemistry, John Wiley and Sons Press, Chichester, 1988
  16. E. Vitoratos, Curr. Appl. Phys. 5 (2005) 579 https://doi.org/10.1016/j.cap.2004.06.024
  17. D. Ofer, R.M. Crooks, M.S. Wrighton, J. Am. Chem. Soc. 112 (1990) 7869 https://doi.org/10.1021/ja00178a004
  18. S.E. San, Y. Yerli, M. Okutan, F. Yılmaz, O. Günaydın, Y. Hames, Mater. Sci. Eng. B 138 (2007) 284 https://doi.org/10.1016/j.mseb.2006.12.017
  19. E. Kymakis, I. Alexandou, G.A.J. Amaratunga, Synth. Met. 127 (2002) 59 https://doi.org/10.1016/S0379-6779(01)00592-6
  20. Ye.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Eur. Polym. J. 38 (2002) 1887 https://doi.org/10.1016/S0014-3057(02)00064-2
  21. J.C. Huang, Adv. Polym. Technol. 21 (2002) 299 https://doi.org/10.1002/adv.10025
  22. E. Unur, L. Toppare, Y. Yagcı, F. Yilmaz, Mater. Chem. Phys. 91 (2005) 261 https://doi.org/10.1016/j.matchemphys.2004.10.051
  23. Bruker AXS GmbH, Diffracplus PDF Maint Powder Diffraction Database Manager Software, 2001

Cited by

  1. Facile Optimal Synthesis of Inherently Electroconductive Polythiophene Nanoparticles vol.15, pp.26, 2009, https://doi.org/10.1002/chem.200900181
  2. Comparative study of conducting polyaniline/copper and polyaniline/nickel composites in the presence of surfactants vol.59, pp.8, 2010, https://doi.org/10.1002/pi.2844
  3. New Method for Fabrication of CSA Doped PANi- ${\rm TiO}_{2}$ Thin-Film Ammonia Sensor vol.11, pp.11, 2011, https://doi.org/10.1109/jsen.2011.2152391
  4. Structure and CO Gas Sensing Properties of PPy/LaFeO3 Nanocomposites vol.675, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/msf.675-677.375
  5. Synthesis and Characterization on ATP/TiO2/PANI Core-Shell Nanocomposites vol.282, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amr.282-283.354
  6. Preparation and Optical Properties of CdS/PVK Nanocomposites Based on CdS Nanorod Arrays vol.391, pp.None, 2011, https://doi.org/10.4028/www.scientific.net/amr.391-392.86
  7. Effect of surfactants on the porogen size in the low-k methylsilsesquioxane/polystyrene hybrid films vol.162, pp.None, 2009, https://doi.org/10.1016/j.micromeso.2012.05.042
  8. Porous palygorskite‐polythiophene conductive composites for acrylic coatings vol.129, pp.5, 2009, https://doi.org/10.1002/app.38995
  9. Dielectric behaviour and conductivity of high-filled BaTiO3-PMMA composites and the facile route of emulsion polymerization in synthesizing the same vol.1, pp.18, 2009, https://doi.org/10.1039/c3tc30204k
  10. Preparation, characterization and thermoelectricity of ATT/TiO2/PANI nano-composites doped with different acids vol.45, pp.1, 2009, https://doi.org/10.1016/j.compositesb.2012.02.028
  11. Effect of surfactant on electrokinetic properties of polyindole/TiO2-conducting nanocomposites in aqueous and nonaqueous media vol.292, pp.2, 2009, https://doi.org/10.1007/s00396-013-3094-7
  12. Solid-State Synthesis and Photocatalytic Activity of Polyterthiophene Derivatives/TiO 2 Nanocomposites vol.7, pp.5, 2009, https://doi.org/10.3390/ma7053786
  13. Electrochemical Characterization of Chemically Synthesized Polythiophene Thin Films: Performance of Asymmetric Supercapacitor Device vol.26, pp.9, 2009, https://doi.org/10.1002/elan.201400284
  14. Influence of surfactants on properties of electrochemically synthesized pyrrole/1-dimethylaminopyrrole copolymer vol.23, pp.10, 2009, https://doi.org/10.1007/s13726-014-0274-3
  15. The effect of anionic surfactant on the properties of polythiophene/chitosan composites vol.54, pp.11, 2009, https://doi.org/10.1002/pen.23814
  16. Spectral, surface and thermal properties of poly(vinylpyrrolidone)/organo-modified-TiO2/organo-modified-layered silicate ternary nanocomposites containing l-leucine amino aci vol.49, pp.3, 2009, https://doi.org/10.1177/0021998313519152
  17. High-performance supercapacitors based on polymeric binary composites of polythiophene (PTP)–titanium dioxide (TiO2) vol.220, pp.None, 2016, https://doi.org/10.1016/j.synthmet.2016.05.023
  18. Synthesis and Characterisation Of Highly Fluorescent Polythiophene Based Composite Nanofibers vol.371, pp.1, 2017, https://doi.org/10.1002/masy.201600054
  19. Batch equilibrium and kinetics of mercury removal from aqueous solutions using polythiophene/graphene oxide nanocomposite vol.75, pp.12, 2009, https://doi.org/10.2166/wst.2017.165
  20. Probing the real-time photocatalytic activity of CdS QDs sensitized conducting polymers: Featured PTh, PPy and PANI vol.155, pp.None, 2009, https://doi.org/10.1016/j.vacuum.2018.06.009
  21. Structural, morphological and electrochemical properties of long alkoxy-functionalized polythiophene and TiO2 nanocomposites vol.124, pp.12, 2009, https://doi.org/10.1007/s00339-018-2277-y
  22. Camphor sulfonic acid assisted synthesis of polythiophene composite for high energy density all-solid-state symmetric supercapacitor vol.30, pp.8, 2009, https://doi.org/10.1007/s10854-019-01060-2
  23. A Ternary PEDOT-TiO2-Reduced Graphene Oxide Nanocomposite for Supercapacitor Applications vol.27, pp.9, 2009, https://doi.org/10.1007/s13233-019-7126-0
  24. The modified polythiophene‐Cu NPs composites for Pb(II) ions removal from aqueous solution vol.139, pp.2, 2009, https://doi.org/10.1002/app.51489
  25. Polythiophene-titanium oxide (PTH-TiO2) nanocomposite: As an electron transfer enhancer for biofuel cell anode construction vol.520, pp.None, 2009, https://doi.org/10.1016/j.jpowsour.2021.230867