DOI QR코드

DOI QR Code

Effects of Annealing Conditions on Microstructure and Mechanical Properties of Low Carbon, Manganese Transformation-Induced Plasticity Steel

Jang, Jae-Myeong;Kim, Sung-Joon;Kang, Nam-Hyun;Cho, Kyung-Mox;Suh, Dong-Woo

  • Published : 20091200

Abstract

The effects of annealing conditions on microstructural evolution and mechanical properties have been investigated in low carbon, manganese TRIP (Mn TRIP) steel based on a 0.12C-6Mn-0.5Si-3Al alloy system. The microstructure of cold-rolled sheet subjected to annealing at 760 ${^{\circ}C}$ to 800 ${^{\circ}C}$ for 30 s to 1800 s consists of a recrystallized ferrite matrix and fine-grained austenite with a phase fraction of 25 % to 35 %. Variation of the annealing conditions remarkably influenced the characteristics of constituent phases and thus affected the tensile strength and elongation. Optimization of microstructural parameters such as grain size and fraction of constituent phases, which control the yield strength, overall work hardening, and the kinetics of straininduced martensite formation, is thus critical for obtaining an exceptional mechanical balance of the alloy.

Keywords

References

  1. V. Zackay, E. R.Parker, D. Fahr, and R. Bush, Trans. ASM 60, 252 (1967)
  2. B. C. De Cooman, Solid State Mater. Sci. 8, 285 (2004) https://doi.org/10.1016/j.cossms.2004.10.002
  3. J. Bouquerel, K. Verbeken, and B.C. De Cooman, Acta mater. 54, 1443 (2006) https://doi.org/10.1016/j.actamat.2005.10.059
  4. S. Zaefferer, J. Ohlert, and W. Bleck, Acta mater. 52, 2765 (2002) https://doi.org/10.1016/j.actamat.2004.02.044
  5. S. J. Park, D. W. Suh, C. S. Oh, and S. J. Kim, Mater. Sci. Forum 558-559, 1423 (2007) https://doi.org/10.4028/www.scientific.net/MSF.558-559.1423
  6. C. Jing, D. W. Suh, C. S. Oh, Z. Wang, and S. J. Kim, Met. Mater. Int. 13, 13 (2007) https://doi.org/10.1007/BF03027817
  7. S. J. Kim, C. G. Lee, T. H. Lee, and C. S. Oh, ISIJ Int. 42, 1452 (2002) https://doi.org/10.2355/isijinternational.42.1452
  8. R. L. Miller, Metall. Trans. 3, 905 (1972) https://doi.org/10.1007/BF02647665
  9. T. Furukawa, H. Huang, and O. Matsumura, Mater. Sci. Tech. 10, 964 (1994) https://doi.org/10.1179/026708394790163537
  10. H. Huang, O. Matsumura, and T. Furukawa, Mater. Sci. Tech. 10, 621 (1994) https://doi.org/10.1179/mst.1994.10.7.621
  11. D. W. Suh, S. J. Park, T. H. Lee, and S. J. Kim, Metall. Mat. Trans. A (in press)
  12. N. Tsuchida, H. Masuda, Y. Harada, K. Fukaura, Y. Tomota, and K. Nagai, Mater. Sci. Eng. A 488, 446 (2008) https://doi.org/10.1016/j.msea.2007.11.047
  13. P. Jacques, Q. Furnemont, T. Pardoen, and F. Delannay, Acta mater. 49, 139 (2001) https://doi.org/10.1016/S1359-6454(00)00215-9
  14. H. N. Han, C. G. Lee, D. W. Suh, and S. J. Kim, Mater. Sci. Eng. A 485, 224 (2008) https://doi.org/10.1016/j.msea.2007.08.022
  15. J. Wang and S. V. D. Zwaag, Metall. Mater. Trans. A 32, 1527 (2001) https://doi.org/10.1007/s11661-001-0240-5
  16. S. Turteltaub and A. S. J. Suiker, Int. J. Solids Struct. 43, 7322 (2006) https://doi.org/10.1016/j.ijsolstr.2006.06.017
  17. D. K. Matlock and J. G. Speer, Proc. the 3rd Int. Conf. Adv. Struct. Steels, p. 744, Korean Institue Metals and Materials, Gyengjoo, Korea (2006)
  18. S. Y. Han, S. Y. Shin, C. Seo, H. Lee, J. H. Bae, K. Kim, S. Lee, and N. J. Kim, J. Kor. Inst. Met. & Mater. 46, 788 (2008)
  19. S. Y. Shin, K. Oh, and Lee, J. Kor. Inst. Met. & Mater. 47, 59 (2009)

Cited by

  1. Ultra Fine-Grained 6wt% Manganese TRIP Steel vol.654, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/msf.654-656.286
  2. Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels vol.528, pp.6, 2009, https://doi.org/10.1016/j.msea.2010.12.085
  3. Effects of Aluminum Addition on Tensile and Cup Forming Properties of Three Twinning Induced Plasticity Steels vol.43, pp.6, 2012, https://doi.org/10.1007/s11661-011-1007-2
  4. Medium-Alloy Manganese-Rich Transformation-Induced Plasticity Steels vol.44, pp.1, 2009, https://doi.org/10.1007/s11661-012-1402-3
  5. Effects of Inclusions on Delayed Fracture Properties of Three TWinning Induced Plasticity (TWIP) Steels vol.44, pp.2, 2009, https://doi.org/10.1007/s11661-012-1472-2
  6. Effect of deformation induced transformation of ɛ-martensite on ductility enhancement in a Fe-12 Mn steel at cryogenic temperatures vol.20, pp.1, 2009, https://doi.org/10.1007/s12540-014-1010-4
  7. Effect of High Temperature Stays Process on Ultra-Low-Carbon Bainitic Steel without Nb, Ti and other Metal Compounds Forming Elements vol.912, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amr.912-914.23
  8. Current opinion in medium manganese steel vol.31, pp.7, 2009, https://doi.org/10.1179/1743284714y.0000000722
  9. Microstructure Characterization and Mechanical Properties of TRIP-aided Steel under Rapid Heating for Different Holding Time vol.23, pp.2, 2009, https://doi.org/10.1016/s1006-706x(16)30025-5
  10. Effects of Al content on non-metallic inclusion evolution in Fe–16Mn–xAl–0.6C high Mn TWIP steel vol.43, pp.3, 2009, https://doi.org/10.1179/1743281215y.0000000041
  11. 상용 TRIP강의 다단 항온 변태 열처리에 따른 미세조직 및 인장 특성 vol.29, pp.3, 2009, https://doi.org/10.12656/jksht.2016.29.3.103
  12. Medium Mn transformation-induced plasticity steels: Recent progress and challenges vol.126, pp.None, 2009, https://doi.org/10.1016/j.scriptamat.2016.07.013
  13. Effect of heating rate on microstructural evolution and mechanical properties of cold-rolled quenching and partitioning steel vol.44, pp.3, 2009, https://doi.org/10.1080/03019233.2016.1209887
  14. Effect of ART-Annealing Conditions on Microstructural Regulation and Deformation Behavior of 0.17C-9Mn-3.5Al TRIP-Aided Steel vol.88, pp.8, 2009, https://doi.org/10.1002/srin.201600410
  15. Workability Study on Austempered AISI 1018 vol.376, pp.None, 2018, https://doi.org/10.1088/1757-899x/376/1/012049
  16. Enhanced Impact Toughness of Heat Affected Zone in Gas Shield Arc Weld Joint of Low‐C Medium‐Mn High Strength Steel by Post‐Weld Heat Treatment vol.89, pp.4, 2018, https://doi.org/10.1002/srin.201700422
  17. Two-Step Intercritical Annealing to Eliminate Lüders Band in a Strong and Ductile Medium Mn Steel vol.49, pp.10, 2009, https://doi.org/10.1007/s11661-018-4791-0
  18. Relative effect of C and Mn on strength-toughness of medium Mn steels vol.35, pp.1, 2009, https://doi.org/10.1080/02670836.2018.1537609
  19. Stacking Fault Energy of Austenite Phase in Medium Manganese Steel vol.50, pp.10, 2009, https://doi.org/10.1007/s11661-019-05367-x
  20. Enhancement of tensile properties by room-temperature quenching and partitioning of 0.2C-10Mn-2Al steel vol.35, pp.17, 2009, https://doi.org/10.1080/02670836.2018.1522101
  21. Effect of Relative Humidity on Mechanical Degradation of Medium Mn Steels vol.13, pp.6, 2009, https://doi.org/10.3390/ma13061304
  22. Composition and processing design of medium-Mn steels based on CALPHAD, SFE modeling, and genetic optimization vol.193, pp.None, 2009, https://doi.org/10.1016/j.actamat.2020.03.052
  23. Effect of Annealing Process on Microstructure and Mechanical Properties in Microalloyed Medium Manganese Steel vol.92, pp.4, 2009, https://doi.org/10.1002/srin.202000517
  24. Microstructure and tensile properties of chemically heterogeneous steel consisting of martensite and austenite vol.223, pp.None, 2009, https://doi.org/10.1016/j.actamat.2021.117506