DOI QR코드

DOI QR Code

Characteristics of Plasma Electrolytic Oxide Coatings on Mg-Al-Zn Alloy Prepared by Powder Metallurgy

Chang, Si-Young;Lee, Du-Hyung;Kim, Bo-Sik;Kim, Taek-Soo;Song, Yo-Seung;Kim, Sung-Ho;Lee, Chan-Bok

  • Published : 20091000

Abstract

Mg-6 wt.%Al-1 wt.%Zn alloy powders were produced by gas atomization, and subsequently compacted and sintered under various conditions of temperature, time, and pressure. The bulk Mg-6 wt.%Al-1 wt.%Zn alloy was coated by the plasma electrolytic oxidation (PEO) method. The optimum condition of compaction and sintering for PEO coatings was established based on the investigation of microstructure, microhardness, and corrosion properties of coatings which were compared to those of cast Mg-6 wt.%Al alloy. The coatings on Mg-6 wt.%Al and Mg-6 wt.%Al-1 wt.%Zn alloys consisted of MgO, $MgAl_{2}O_{4}$, and $Mg_{2}SiO_{4}$. The Mg-6 wt.%Al-1 wt.%Zn alloy compacted at room temperature for 10 min and sintered at 893 K for 3 h showed the most porous and nonuniform coating layer because the coatings had grown through grain boundaries that resulted from poor bonding between powder particles in the substrate. However, the coated Mg-6 wt.%Al-1 wt.%Zn alloy hot-compacted at 593 K for 10 min had the thickest coating layer and the highest microhardness. In addition, it demonstrated the best corrosion resistance as verified by polarization curves in 3.5% NaCl solution.

Keywords

References

  1. Y. Kojima and S. Kamado, Mater. Sci. Forum 488, 9 (2005) https://doi.org/10.4028/www.scientific.net/MSF.488-489.9
  2. B. H. Choi, B. S. You, and I. M. Park, Met. Mater. Int. 12, 63 (2006) https://doi.org/10.1007/BF03027525
  3. N. J. Park, J. H. Hwang, and J. S. Roh, J. Kor. Inst. Met. & Mater. 47, 1 (2009)
  4. B. S. Shin, Y. Kim, and D. H. Bae, J. Kor. Inst. Met. & Mater. 46, 1 (2008)
  5. M. Sugamata, S. Hanawa, and J. Kaneko, Mater. Sci. Eng. A 226-228, 861 (1997) https://doi.org/10.1016/S0921-5093(97)80089-5
  6. A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Surf. Coat. Tech. 122, 73 (1999) https://doi.org/10.1016/S0257-8972(99)00441-7
  7. Y. Kawamura, K. Hayashi, A. Inoue, and T. Matsumoto, Mater. Trans. 42, 1172 (2001) https://doi.org/10.2320/matertrans.42.1172
  8. D. J. Sakkinen, SAE Technical Paper Series, 940779
  9. Japan Inst. of Magnesium, Handbook of Advanced Magnesium Technology, p. 144, Kallos Publishing Co., Tokyo (2000)
  10. J. Liang, B. Guo, J. Tian, H. Liu, J. Zhou, and T. Xu, Appl. Surf. Sci. 252, 345 (2005) https://doi.org/10.1016/j.apsusc.2005.01.007
  11. J. A. Curran and T. W. Clyne, Surf. Coat. Tech. 199, 177 (2005) https://doi.org/10.1016/j.surfcoat.2004.11.045
  12. B. H. Song, Y. L. Kim, and S. Y. Chang, Sol. St. Phen. 124- 126, 763 (2007) https://doi.org/10.4028/www.scientific.net/SSP.124-126.763
  13. S. Y. Chang, Y. L. Kim, B. H. Song, and J. H. Lee, Mater. Sci. Forum 539-543, 1224 (2007) https://doi.org/10.4028/www.scientific.net/MSF.539-543.1224
  14. H. Guo, M. An, S. Xu, and H. Huo, Mater. Lett. 60, 1538 (2006) https://doi.org/10.1016/j.matlet.2005.11.066
  15. Japan Inst. of Magnesium, Handbook of Advanced Magnesium Technology, p. 343-345, Kallos Publishing Co., Tokyo (2000)

Cited by

  1. Correlation between KOH concentration and surface properties of AZ91 magnesium alloy coated by plasma electrolytic oxidation vol.205, pp.7, 2010, https://doi.org/10.1016/j.surfcoat.2010.09.055
  2. 과망간산칼륨 용액에서 화학적으로 형성된 AZ31B 마그네슘 합금의 피막 특성평가 vol.44, pp.2, 2009, https://doi.org/10.5695/jkise.2011.44.2.044
  3. Microstructure and Mechanical Properties of Hot-Extruded Mg-3Zn-2Sn-0.4Ag-xNd (x = 0, 1 and 3 mass%) Alloys vol.53, pp.7, 2012, https://doi.org/10.2320/matertrans.m2012016
  4. Precipitate prediction model of Mg-xAl(x=3,6,9) alloys vol.19, pp.2, 2009, https://doi.org/10.1007/s12540-013-2001-6
  5. Structure and Property of Micro-arc Oxidation Coating Modified by Laser Melting and Solidifying on Aluminum Alloy : Structure and Property of Micro-arc Oxidation Coating Modified by Laser Melting and vol.28, pp.8, 2013, https://doi.org/10.3724/sp.j.1077.2013.12598
  6. Microstructure and mechanical properties on aging behavior of Zn containing Mg-2Sn-0.4Mn alloy vol.32, pp.None, 2009, https://doi.org/10.1016/j.intermet.2012.08.008
  7. Characteristics of micro-arc oxidation and laser melting modified compound film on Ti alloy surface vol.4, pp.2, 2009, https://doi.org/10.1680/emr.15.00003
  8. Compactness of coatings treated by MAO and LSM on Ti alloy vol.4, pp.2, 2009, https://doi.org/10.1680/jemmr.15.00015
  9. Researches on a novel severe plastic deformation method combining direct extrusion and shearings for AZ61 magnesium alloy based on numerical simulation and experiments vol.23, pp.3, 2009, https://doi.org/10.1007/s12540-017-6578-z
  10. Role of graphene additive on wear and electrochemical corrosion behaviour of plasma electrolytic oxidation (PEO) coatings on Mg-MWCNT nanocomposite vol.36, pp.8, 2009, https://doi.org/10.1080/02670844.2019.1689640
  11. Fatigue Behavior of an AM50 Die-Casting Alloy Anodized by Plasma Electrolytic Oxidation vol.14, pp.24, 2009, https://doi.org/10.3390/ma14247795