Characteristics of Wheat Germ Oil during Enzymatic Ethanolysis in Supercritical Carbon Dioxide

초임계 이산화탄소에서 밀배아유의 효소적 에탄올화 반응 특성

  • Back, Sung-Sin (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Kwon, Kyung-Tae (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Jung, Go-Woon (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Ahn, Hyaung-Min (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Sim, Jeong-Eun (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Kang, Hee-Moon (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Chun, Byung-Soo (Faculty of Food Science and Biotechnology, Pukyong National University)
  • 백성신 (부경대학교 식품공학과) ;
  • 권경태 (부경대학교 식품공학과) ;
  • 정고운 (부경대학교 식품공학과) ;
  • 안향민 (부경대학교 식품공학과) ;
  • 심정은 (부경대학교 식품공학과) ;
  • 강희문 (부경대학교 식품공학과) ;
  • 전병수 (부경대학교 식품공학과)
  • Received : 2009.06.08
  • Accepted : 2009.08.18
  • Published : 2009.10.31

Abstract

Enzymatic ethanolysis of wheat germ oil with immobilized lipase was investigated for enhancing the function of wheat germ oil. Ethanolysis reactions were carried out in two different systems; non-pressurized and pressurized system. In non-pressurized system, the enzymatic ethanolysis was carried out in an erlenmeyer flask(25 ml) containing a mixture of wheat germ oil and 99.90% ethanol using 1~5 wt% immobilized lipase as Lipozyme TL-IM and Lipozyme RM-IM and the reaction mixtures were incubated at $40{\sim}70^{\circ}C$ with 120 rpm shaking. In pressurized system, the enzymatic ethanolysis was carried out at various condition; immobilized lipase concentration(2 wt%), reaction time(24 h), reaction temperature($40{\sim}60^{\circ}C$) and reaction pressure(75, 100, 150, 200 bars). The samples obtained from each fraction were analyzed by HPLC for analysing contents of monoglyceride, diglyceride, and triglyceride. The conversion of wheat germ oil relied on the reaction temperature and the concentration of immobilized lipase. The optimum condition of enzymatic ethanolysis in non-pressurized and pressurized systems was at $50^{\circ}C$ and 100 bar.

이번 연구에서는 밀배아유의 기능성 향상을 위해 고정화 효소를 이용한 밀배아유의 효소적 에탄올 반응을 수행했고, 효소적 에탄올 반응의 비가압조건과 가압조건을 중점적으로 비교 분석했다. 비가압조건 효소적 에탄올 반응 수행은 밀배아유와 99.9% 에탄올 혼합물에 두 가지 고정화 효소인 Lipozyme TL-IM과 Lipozyme RM-IM를 1~5 w%(밀배아 기준 무게비)로 25 ml 플라스크에 shaking machine 상에서 $40{\sim}70^{\circ}C$, 120 rpm 조건으로 실험을 수행했다. 가압조건상에서의 효소적 에탄올 반응 조건은 고정화 효소 2 w%, 반응 시간 24시간, 반응 온도 $40{\sim}60^{\circ}C$ 및 반응 압력 75, 100, 150, 200 bar으로 수행했다. 실험으로부터 회수된 sample은 트리글리세라이드의 분해 정도를 살펴보기 위해 모노-, 디-, 트리글리세라이드를 HPLC를 이용하여 분석했다. 밀배아유의 전반적인 전환율은 반응온도와 고정화 효소의 농도에 따라 증가했고, 최적 반응 조건은 가압조건 $50^{\circ}C$, 100 bar이었다.

Keywords

Acknowledgement

Supported by : 한국산업기술재단, 중소기업청

References

  1. Sauer, D. B., 'Storage of Cereal Grains and Their Products,' American Association of Cereal Chemists, inc, 14-22(1992)
  2. Rural development administration national rural living science institute., Food composition table., 20-21, 434-435, 532-533, 582(1996)
  3. Dliveira, J. and Vladimir, O., 'Enzymatic Alcoholysis of Palm Kernel Oil in n-hexane and S$CO_{2}$,' J. Supercrit. Fluids., 19, 141(2001) https://doi.org/10.1016/S0896-8446(00)00068-1
  4. Lee, J. S., Jang, Y. and Yang, T. H., 'Low-calorie Structured Lipids Synthesis by Enzymatic Transesterification', Ministry of Agriculture and Forestry, Seoul, Korea(1999)
  5. Akoh, C. C., Food Liquids. Chemistry, Nutrition. and Biochemistry. M. Dekker Inc., New York, USA(2002)
  6. Maki, K. C., Davidson, M. H., Tsushima, R., Matsuo, N., Tokimitsu, I., Umporowicz, D. N., Dicklin, M. R., Foster, G. S., Ingram, K. A., Anderson, B. D., Forst, S. D. and Bell, M., 'Consumption of Diacylglycerol Oil as Part of a Reduced-energy Diet Enhances Loss of Body Weight and Fat in Comparison with Consumption of a Triacylglycerol Control Oil', Am. J. Clin. Nutr., 76, 1230-1236(2002) https://doi.org/10.1093/ajcn/76.6.1230
  7. Watanabe, T., Sugiura, M., Sato, M., Yamada, N. and Nakanishi, K., 'Diacylglycerol Production in a Packed Bed Bioreactor,' Process Bio-chem., 40, 637-643(2005) https://doi.org/10.1016/j.procbio.2004.01.046
  8. Park, R. K. and Lee, K. T., 'Synthesis and Characterization of Mono- and Diacylglycerol Enriched Functional Oil by Enzymatic Glycerolysis of Corn Oil,' Korean. Food Sci. Technol., 36, 211-216(2004)
  9. Rosu, R., Yasui, M., Iwasaki, Y. and Yamane, T., 'Enzymatic Synthesis of Symmertrical 1,3-Diacylglycerols by Direct Esterification of Glycerol in Solvent-Free System,' J. Am. Oil Chem. Soc., 76, 839-843(1999) https://doi.org/10.1007/s11746-999-0074-7
  10. Kang, S. T. and Yamane, T., 'Effect of Temperature on Diacylglycerol Production by Enzymatic Solid-Phase Glycerolysis of Hydrogenated Beef Tallow,' Korean J. Food Sci. Technol., 26, 567-572(1994)
  11. Kwon, S. J., Han, J. J. and Rhee, J. S., "Production and in Situ Separation of Mono- or Diacylglycerol Catalyzed by Lipasein nhexane," Enzyme Microb. Technol., 17, 700-704(1995) https://doi.org/10.1016/0141-0229(94)00117-A
  12. Yang, B., Harper, W. J., Parkin, K. L. and Chen, J., "Screening off Commercial Lipases for Production of Mono- and Diacylglycerols from Butter Oil by Enzymic Glycerolysis," Dairy J., 4, 1-13(1994) https://doi.org/10.1016/0958-6946(94)90045-0
  13. Rosu, R., Uozaki, Y., Iwasaki, Y. and Yamane, T., "Repeated Use of Immobilized Lipase for Monoacylglycerol Production by Solid- Phase Glycerolysis of Olive Oil," J. Am. Oil Chem. Soc., 74, 445- 450(1997) https://doi.org/10.1007/s11746-997-0104-2
  14. Randolph, T. W., Blanch, H. W., Prausnitz, J. M. and Wilke, C. R., "Enzymatic Catalysis in a Supercritical Fluid," Biotechnol. Lett., 7, 325(1985) https://doi.org/10.1007/BF01030279
  15. Hammond, D. A., Karel, M., Klibanov, A. M. and Krukonis, V. J., "Enzymatic Reactions in Supercritical Gases," J. Appl. Biochem. Biotechnol., 11, 393(1985) https://doi.org/10.1007/BF02798672
  16. Nakamura, K., Chi, Y. M., Tamada, Y. and Yano, T., "Lipase Activity and Stability in Supercritical Carbon Dioxide," Chem. Eng. Commun., 45, 207(1986) https://doi.org/10.1080/00986448608911384
  17. Van, E., A, M. N., Dejong, J. P. L., Doddema, H. J. and Lindebom, "Enzymatic Transesterification in Supercritical Carbon Dioxide," D. R., in perrut, M(ed.), Proc. Int. Symp. Supercritical Fluids., 2, 933(1988)
  18. Pasta, P., Mazzola, G., Carrea, G. and Riva, S., 'Subtilisin-catalyzed Transesterification in Supercritical Carbon Dioxide,' Biotechnol. Lett., 9, 643(1989) https://doi.org/10.1007/BF01025275
  19. Holcapek, M., Janadera, P., Fischer, J. and Prokes, B., "Analytical Monitoring of Production of Biodiesel by High-performance Liquid Chromatography with Various Detection Methods," J. Chromatogr. A., 858, 13-31(1999) https://doi.org/10.1016/S0021-9673(99)00790-6
  20. Shimada, Y., Watanabe, Y., Sugihara, A. and Tominaga Y., "Enzymatic Alcohlysis for Biodiesel Fuel Production and Application of the Reaction to Oil Processing", J. Mol. Catal. B. Enzym, 17, 133(2002) https://doi.org/10.1016/S1381-1177(02)00020-6
  21. Zaks, A. and Klivabov, A. M., "Enzymatic Catalysis in Organic Media at 100 oC," Science., 224, 1249(1984) https://doi.org/10.1126/science.6729453
  22. Kamat, S. V., Beckman, E. J. and Russell, A. J., 'Enzyme Activity in Supercritical Fluids,' Biotechnology., 15, 41(1995) https://doi.org/10.3109/07388559509150531
  23. Yutaka, I., Norio, S., Masahiko, A. and Harvy, W. B., The Journal of Physical Chemistry., 99, 8941(1995) https://doi.org/10.1021/j100022a001
  24. King, J. W., Eissler, R. L. and Friendrich, J. P., "In Supercritical Fluid Extraction and Chromatography," ACS Symp. Ser., 366, 63- 88(1988) https://doi.org/10.1021/bk-1988-0366.ch004
  25. Zeljko, K. and Maja, H., 'Compressed Gases as Alternative Enzymatic-Reaction Solvent a Shot Review,' J. Supercrit. Fluids., 23 (2001)
  26. Lee, H. S., Ryu, Y. W. and Kim, C., 'Hydrolysis of Starch in Supercritical Carbon Dioxide,' Annals of the Research Center for New Bio-Materials in Agriculture, 4, 66-73(1995)