Large Deformational Elasto-Plastic Analysis of Space Frames Considering Finite Rotations and Joint Connection Properties

유한회전과 접합부 특성을 고려한 공간프레임의 대변형 탄소성 해석

  • Received : 2009.01.13
  • Accepted : 2009.06.08
  • Published : 2009.12.27

Abstract

In this paper, large-deformation elasto-plastic analysis of space frames that considersjoint connection properties is presented. This method is based on the large-deformation formula with finite rotation, which was developed initially for elastic systems, and is extended herein to include the elasto-plastic effect and the member joint connection properties of semi-rigid what?. The analytical method was derived from the Eulerian concept, which takes into consideration the effects of large joint translations and rotations. The localmember force-deformation relationships were obtained from the beam-column approach, and the change caused by the axial strain in the member chord lengths and flexural bowing were taken into account. The effect of the axial force of the member on bending and torsional stiffness, and on the plastic moment capacity, is included in the analysis. The material is assumed to be ideally elasto-plastic, and yielding is considered concentrated at the member ends in the form of plastic hinges. The semi-rigid properties of the member joint connection are considered based on the power or linear model. The arc length method is usedto trace the post-buckling range of the elastic and elasto-plastic problems with the semi-rigid connection. A sample non-linear buckling analysis was carried out with the proposed space frame formulations to demonstrate the potential of the developed method in terms of its accuracy and efficiency.

본 연구에서는 접합부 특성이 고려된 공간프레임의 대변형 탄소성해석법에 관한 내용을 기술한다. 이 해석법은 유한변형을 고려한 대변형 탄성해석법에 기초한 것으로 부재의 재료적 탄소성, 접합부 반강접 특성을 추가적으로 고려하였다. 절점의 유한변형은 오일러의 개념으로 부터 유도되었으며, 부재좌표계에서 계산된 부재변형은 보-기둥식에 대입하여 부재력을 계산하였다. 부재변형은 부재축변형과 휨에 의한 축변형효과를 함께 고려하여 계산하였으며, 부재축력의 휨강성, 비틀림강성에 대한 효과를 고려하여 항복함수를 계산하였다. 재료는 완전 탄소성으로 가정하였고, 항복은 부재 양단부에서 집중하여 발생하는 소성힌지의 개념을 사용하였다. 부재 접합부 반강접 특성은 지수모델이나 선형모델을 적용하였고, 접합부 특성이 고려된 탄소성 후좌굴해석을 수행하기 위해 호장법을 사용하였다. 본 연구내용의 정확성 및 효율성을 검증하기 위해 공간프레임에 대한 해석을 수행하였다.

Keywords

Acknowledgement

Supported by : 한국건설교통기술평가원

References

  1. 김문영 (1994) 공간 뼈대구조물의 탄소성 유한요소해석, 성대논문집(과학기술편), 제45권, 제2호, pp.317-329
  2. 김문영, 노범준, 정성엽 (1996) 공간뼈대 구조물의 대변형 및 탄소성 유한요소해석, 한국강구조학회 학술발표대회 논문집, pp.157-168
  3. 김종민, 정명채 (2007) 等分布荷重 및 偏載荷重을 고려한 單層 래티스 돔의 斷面算定法, 대한건축학회 논문집(구조계), 제23권, 제3호, pp.45-53
  4. 이경수, 한상을 (2009) 공간프레임의 대변형 해석을 위한 오일러리안 정식화, 대한건축학회 구조계, 제25권, 제1호, pp. 73-80
  5. 정명채 (2000) Roller 지지된 단층 래티스 돔의 탄소성 좌굴 내력에 접합형식이 미치는 영향, 대한건축학회 논문집(구조계), 제16권, 제8호 pp.27-35
  6. 한상을, 이진섭, 권현재 (2001) 접합부의 특성을 고려한 볼 접합단층 래티스 돔의 탄소성 좌굴해석, 대한건축학회 논문집(구조계), 제17권, 제6호, pp.43-51
  7. 한상을, 이경수 (2007) 공간구조의 후좌굴 해석에 관한 연구, 대한건축학회 구조계, 제23권, 제7호, pp.53-60
  8. 한상을, 이경수 (2007) 공간구조의 비선형 탄소성 후좌굴해석에 관한 연구, 대한건축학회 구조계, 제23권, 제12호, pp.59-68
  9. Abbasnia, R. and Kassimali, A. (1995) Large DeformationElastic-plastic Analysis of Space Frames, J.Construct. Steel Research, Vol. 35, pp.275-290 https://doi.org/10.1016/0143-974X(95)00008-J
  10. Argyris, J. H., Dunne, P. C., and Scharpf, D. W. (1978) Onlarge displacement small strain analysis of structures with rotational degrees of freedom, Computer Methods in Applied Mechanics and Engineering.Vol. 14, pp.401-451, Vol. 15, pp.99-135 https://doi.org/10.1016/0045-7825(78)90008-7
  11. Argyris, J. H., Balmer, H., Doltsinis, I. St., Dunne, P. C., Haase, M., Kleiber, M., Malejannakis, G. A., Mlejnek,H. P., Muller, M. and Scharpf, D. W. (1979) Finite element method-The natural approach, Computer Methods in Applied Mechanics and Engineering, Vol.17, No. 18, pp.1-106 https://doi.org/10.1016/0045-7825(79)90083-5
  12. Argyris, J. H., Boni, B., Hindenlang, U., and Kleiber, M.(1982) Finite element analysis of two and threedimensional elasto-plasic frames-the natural approach, Comput. Meths. Appl. Mech. Engrg, Vol. 35,pp.221-248 https://doi.org/10.1016/0045-7825(82)90135-9
  13. Chen, W. F., and Lui, E. M. (1991) Stability Design of Steel Frames, CRC Press
  14. Chen, W. F., Goto, Y. and Liew, J. Y. R. (1996) Stability Design of Semi-Rigid Frames, John Willey& Sons, Inc
  15. Cheng. H. and Gupta, K. C. (1989) An historical noteon finite rotations, J. Applied Mechanics, Vol. 56, pp.139-145 https://doi.org/10.1115/1.3176034
  16. Crisfield, M. A. (1997) Nonlinear finite element analysis of solids and structures, Vol. 2, Advanced Topics, John Wiley & Sons
  17. Euler, L. (1775) Formulae Generales pro Trans latione Quacunque Corporum Rigiddrum, Novi Commentari Acad. Imp. Petrop., Vol.20, pp.189-207
  18. Goldstein, H. (1980) Classical Mechanics, Addison-Wesley
  19. Hodge, D. G. (1959) Plastic Analysis of Structures, McGraw -Hill, New York, USA
  20. Izzuddin, B. A., and Elnashai, A. S. (1993) Eulerian formulation for large displacement analysis of space frames, J. Eng. Mech. ASCE, Vol. 119, No. 3, pp.549-569 https://doi.org/10.1061/(ASCE)0733-9399(1993)119:3(549)
  21. Kassimali, A. (1983) Large deflection analysis of elastic-plastic frames, J. Struct. Eng., Vol. 109, No. 8,pp.1869-1886 https://doi.org/10.1061/(ASCE)0733-9445(1983)109:8(1869)
  22. Kassimali, A., and Abbasnia, R. (1991) Large deformation analysis of elastic space frames. J. Struc. Eng. ASCE, Vol. 117, No. 7, pp.2067-2087 https://doi.org/10.1061/(ASCE)0733-9445(1991)117:7(2069)
  23. Kishi, N., and Chen, W. F. (1990) Moment-Rotation Relations of Semi-Rigid Connections with Angles, Journal of Structural Engineering, ASCE, Vol. 116 No. 7, pp.1813-1834 https://doi.org/10.1061/(ASCE)0733-9445(1990)116:7(1813)
  24. Kondoh, K., and Atluri, S. N. (1986) Simplified Finite Element Method for Large Deformation, Post-Buckling Analysis of Large Frame Structures, Using Explicitly Derived Tangent Stiffness Matrices, Int. J. Num. Meth. Eng. Vol. 23, No.1, pp.69-90 https://doi.org/10.1002/nme.1620230107
  25. Liew, J. Y. R., Chen, H., Shanmugam, N. E., and Chen,W. F. (2000) Improved nonlinear plastic hinge analysis of space frame structures. Engineering Structures, Vol. 22, pp.1324-1338 https://doi.org/10.1016/S0141-0296(99)00085-1
  26. Liu, Y., Xu, L. and Griersonb, D. E. (2008) Compound-element modeling accounting for semi-rigid connections and member plasticity, Engineering Structures, Vol. 30, pp.1292-1307 https://doi.org/10.1016/j.engstruct.2007.07.026
  27. Meek, J. L., and Tan, H. S. (1984) Geometrically Nonlinear Analysis of Space Frames by an Incremental IterativeTechnique. Computer Methods in Applied Mechanics and Engineering. Vol. 47. pp.261-282 https://doi.org/10.1016/0045-7825(84)90079-3
  28. Nee, K. M., and Haldar, A. (1988) Elastoplastic Nonlinear Post-Buckling Analysis of Partially Restrained Space Structures. Methods in Applied Mechanics and Engineering. Vol. 71. pp.69-97 https://doi.org/10.1016/0045-7825(88)90096-5
  29. Oran, C. (1973) Tangent stiffnes in space frame, J. Struc. Div., ASCE, pp.987-1001
  30. Papadrakakis, M., and Ghionis, P. (1986) Conjugate gradient algorithms in nonlinear structural analysis problems, Comput. Methods Appl. Mech. and Engrg., Vol. 59, No. 1, pp.11-27 https://doi.org/10.1016/0045-7825(86)90021-6
  31. Powell, G. H., and Chen, P. F. (1986) 3-D Beam-column element with generalized plastic hinges. J. Engng Mech. ASCE, Vol. 112, No.7, pp.627-641 https://doi.org/10.1061/(ASCE)0733-9399(1986)112:7(627)
  32. Renton, J.D.(1962) Stability of space frames by computer analysis. J. Sruct. Div., ASCE, Vol.88(8), pp.81-103
  33. Saafan, S.A. (1962) Nonlinear behavior of structural plane frames, J. Sruct. Div., ASCE, Vol. 89, No. 4, pp.557- 579
  34. Sekulovic, M., and Nefovska-Danilovic, M. (2008) Contributionto transient analysis of inelastic steel frames withsemi-rigid connections, Engineering Structures, Vol.30, pp.976-989 https://doi.org/10.1016/j.engstruct.2007.06.004
  35. Shi, G. and Atluri, S. N. (1988) Elasto-plastic large deformation analysis of space-frames : a plastic-hingeand stress-based explicit derivation of tagent stiffness, Int. J. Num. Meth. Eng. Vol. 26, pp.589-615 https://doi.org/10.1002/nme.1620260306
  36. Spiller, W. R. (1989) Geometric stiffness matrix for space frames, Computers & Structures, Vol. 36, no. 1, pp.29-37 https://doi.org/10.1016/0045-7949(90)90171-W
  37. Ueda, Y., and Yao, T. (1982) The plastic node method : A new method of plastic analysis, Comput. Meths. Appl. Mech. Engrg. Vol. 34, pp.1089-1104 https://doi.org/10.1016/0045-7825(82)90103-7
  38. 加藤史郎 (1997) 單層ラチスドームの座屈に關する硏究成果の報告,ラチス構造の彈遡性座屈解析法 の基礎, 符籙1, 豊橋技術科學大學建設工學系構造工學講座
  39. 一級建築士事務所 : http://www.sdr-tech.co.jp/