DOI QR코드

DOI QR Code

Prevalence of the Extended-Spectrum $\beta$-Lactamase and qnr Genes in Clinical Isolates of Escherichia coli

Escherichia coli 의 Extended-Spectrum $\beta$-Lactamase 및 qnr 유전자 보유 현황

Park, Yong-Jung;Kang, Hyun-Kyung;Bae, Il-Kwon;Kim, Ju-Won;Kim, Jae-Seok;Uh, Young;Jeong, Seok-Hoon;Lee, Kyung-Won
박용정;강현경;배일권;김주원;김재석;어영;정석훈;이경원

  • Published : 20090600

Abstract

Background : This study was performed to investigate the prevalence of qnr genes in clinical isolates of Escherichia coli from Korea that produce extended-spectrum β-lactamases (ESBLs). Methods : During the period of May to June 2005, we collected clinical isolates of E. coli that were intermediate or resistant to ceftazidime and/or cefotaxime from 11 Korean hospitals. Antimicrobial susceptibility was determined by the disk diffusion and agar dilution methods. ESBL production was confirmed phenotypically by the double-disk synergy test. ESBL and qnr genes were searched for by PCR amplification, and the PCR products were then subjected to direct sequencing. Results : Double-disk synergy tests were positive in 84.3% (118/140) of ceftazidime- and/or cefotaxime-nonsusceptible E. coli isolates. The most prevalent types of ESBL in E. coli isolates were CTXM-14 (N=41) and CTX-M-15 (N=58). Other ESBLs were also identified, including CTX-M-3 (N=7), CTX-M-9 (N=8), CTX-M-12 (N=1), CTX-M-57 (N=1), SHV-2a (N=2), SHV-12 (N=17) and TEM-52 (N=4). The qnrA1 and qnrB4 genes were identified in 4 and 7 ESBL-producing isolates, respectively. Conclusions : CTX-M-type enzymes were the most common type of ESBL in E. coli isolates from Korea, and the qnr genes were not uncommon in ESBL-producing E. coli isolates. Dissemination of E. coli containing both ESBL and qnr genes could compromise the future usefulness of the expanded-spectrum antibiotics for the treatment of infections.

Keywords

References

  1. Rossolini GM, D'Andrea MM, Mugnaioli C. The spread of CTX-Mtype extended-spectrum beta-lactamases. Clin Microbiol Infect 2008; 14(S1):S33-41
  2. Bush K. Extended-spectrum beta-lactamases in North America, 1987-2006. Clin Microbiol Infect 2008;14(S1):S134-43
  3. Pai H, Lyu S, Lee JH, Kim J, Kwon Y, Kim JW, et al. Survey of extended-spectrum beta-lactamases in clinical isolates of Escherichia coli and Klebsiella pneumoniae: prevalence of TEM-52 in Korea. J Clin Microbiol 1999;37:1758-63
  4. Ryoo NH, Kim EC, Hong SG, Park YJ, Lee K, Bae IK, et al. Dissemination of SHV-12 and CTX-M-type extended-spectrum beta-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae and emergence of GES-3 in Korea. J Antimicrob Chemother 2005;56:698-702 https://doi.org/10.1093/jac/dki324
  5. Neuhauser MM, Weinstein RA, Rydman R, Danziger LH, Karam G, Quinn JP. Antibiotic resistance among gram-negative bacilli in US intensive care units: implications for fluoroquinolone use. JAMA 2003;289:885-8 https://doi.org/10.1001/jama.289.7.885
  6. Sheng WH, Chen YC, Wang JT, Chang SC, Luh KT, Hsieh WC. Emerging fluoroquinolone-resistance for common clinically important gram-negative bacteria in Taiwan. Diagn Microbiol Infect Dis 2002;43:141-7 https://doi.org/10.1016/S0732-8893(02)00381-4
  7. Kahlmeter G. An international survey of the antimicrobial susceptibility of pathogens from uncomplicated urinary tract infections: the ECO.SENS Project. J Antimicrob Chemother 2003;51:69-76 https://doi.org/10.1093/jac/dkg028
  8. Research Institute of Bacterial Resistance, Yonsei University College of Medicine. WHO Network on Antimicrobial Resistance monitoring: Korean Focal Point and Core Laboratory, Focal Point Data. Antimicrobial resistance newsletter 2006;14. (세브란스병원진단검사 의학과, 세균내성연구소. WHO Network on Antimicrobial Resistance monitoring: Korean Focal Point and Core Laboratory, Focal Point Data. 항균제내성소식 2006;14.)
  9. Hooper DC. Mechanisms of fluoroquinolone resistance. Drug Resist Updat 1999;2:38-55 https://doi.org/10.1054/drup.1998.0068
  10. Martinez-Martinez L, Pascual A, Jacoby GA. Quinolone resistance from a transferable plasmid. Lancet 1998;351:797-9 https://doi.org/10.1016/S0140-6736(97)07322-4
  11. Wang M, Tran JH, Jacoby GA, Zhang Y, Wang F, Hooper DC. Plasmid- mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob Agents Chemother 2003;47: 2242-8 https://doi.org/10.1128/AAC.47.7.2242-2248.2003
  12. Shin JH, Jung HJ, Lee JY, Kim HR, Lee JN, Chang CL. High rates of plasmid-mediated quinolone resistance QnrB variants among ciprofloxacin- resistant Escherichia coli and Klebsiella pneumoniae from urinary tract infections in Korea. Microb Drug Resist 2008;14:221-6 https://doi.org/10.1089/mdr.2008.0834
  13. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. 18th Informational supplement. M100-S18. Wayne, PA: Clinical and Laboratory Standards Institute, 2008
  14. Song W, Kim JS, Kim HS, Jeong SH, Yong D, Lee KM. Emergence of Escherichia coli isolates producing conjugative plasmid-mediated DHA-1 beta-lactamase in a Korean university hospital. J Hosp Infect 2006;63:459-64 https://doi.org/10.1016/j.jhin.2006.03.009
  15. Bae IK, Lee YN, Hwang HY, Jeong SH, Lee SJ, Kwak HS, et al. Emergence of CTX-M-12 extended-spectrum beta-lactamase-producing Escherichia coli in Korea. J Antimicrob Chemother 2006;58:1257-9 https://doi.org/10.1093/jac/dkl397
  16. Bae IK, Jeong SH, Lee K, Yong D, Lee J, Hong SG, et al. Emergence of CTX-M-12 and a novel CTX-M type extended-spectrum $\beta$-lactamase-producing Klebsiella pneumoniae. Korean J Lab Med 2006;26: 21-6. (배일권, 정석훈, 이경원, 용동은, 이종욱, 홍성근등. CTX-M-12와 새로운 CTX-M형 Extended-Spectrum $\beta$-Lactamase 생성 Klebsiella pneumoniae의 출현. 대한진단검사의학회지 2006;26:21-6.) https://doi.org/10.3343/kjlm.2006.26.1.21
  17. Karim A, Poirel L, Nagarajan S, Nordmann P. Plasmid-mediated extended-spectrum $\beta$-lactamase (CTX-M-3 like) from India and gene association with insertion sequence ISEcp1. FEMS Microbiol Lett 2001;201:237-41
  18. Pai H, Choi EH, Lee HJ, Hong JY, Jacoby GA. Identification of CTXM- 14 extended-spectrum $\beta$-lactamase in clinical isolates of Shigella sonnei, Escherichia coli, Klebsiella pneumoniae in Korea. J Clin Microbiol 2001;39:3747-9 https://doi.org/10.1128/JCM.39.10.3747-3749.2001
  19. Hopkins KL, Threlfall EJ, Karisik E, Wardle JK. Identification of novel plasmid-mediated extended-spectrum beta-lactamase CTX-M-57 in Salmonella enterica serovar Typhimurium. Int J Antimicrob Agents 2008;31:85-6
  20. Kariuki S, Corkill JE, Revathi G, Musoke R, Hart CA. Molecular characterization of a novel plasmid-encoded cefotaximase (CTX-M-12) found in clinical Klebsiella pneumoniae isolates from Kenya. Antimicrob Agents Chemother 2001;45:2141-3 https://doi.org/10.1128/AAC.45.7.2141-2143.2001
  21. Villegas MV, Correa A, Perez F, Zuluaga T, Radice M, Gutkind G, et al. CTX-M-12 $\beta$-lactamase in a Klebsiella pneumoniae clinical isolate in Colombia. Antimicrob Agents Chemother 2004;48:629-31 https://doi.org/10.1128/AAC.48.2.629-631.2004
  22. Munshi MH, Sack DA, Haider K, Ahmed ZU, Rahaman MM, Morshed MG. Plasmid-mediated resistance to nalidixic acid in Shigella dysenteriae type 1. Lancet 1987;2:419-21
  23. Jeong JY, Yoon HJ, Kim ES, Lee Y, Choi SH, Kim NJ, et al. Detection of qnr in clinical isolates of Escherichia coli from Korea. Antimicrob Agents Chemother 2005;49:2522-4 https://doi.org/10.1128/AAC.49.6.2522-2524.2005
  24. Choi SH, Woo JH, Lee JE, Park SJ, Choo EJ, Kwak YG, et al. Increasing incidence of quinolone resistance in human non-typhoid Salmonella enterica isolates in Korea and mechanisms involved in quinolone resistance. J Antimicrob Chemother 2005;56:1111-4 https://doi.org/10.1093/jac/dki369
  25. Park YJ, Yu JK, Lee S, Oh EJ, Woo GJ. Prevalence and diversity of qnr alleles in AmpC-producing Enterobacter cloacae, Enterobacter aerogenes, Citrobacter freundii and Serratia marcescens: a multicentre study from Korea. J Antimicrob Chemother 2007;60:868-71 https://doi.org/10.1093/jac/dkm266

Cited by

  1. Frequency of Extended-spectrum β-lactamase (ESBL) and AmpC β-lactamase Genes in Escherichia coli and Klebsiella pneumoniae over a Three-year Period in a University Hospital in Korea vol.30, pp.6, 2009, https://doi.org/10.3343/kjlm.2010.30.6.616
  2. Prevalence of Plasmid-Mediated Quinolone Resistance and Mutations in the Gyrase and Topoisomerase IV Genes in Salmonella Isolated from 12 Tertiary-Care Hospitals in Korea vol.17, pp.4, 2009, https://doi.org/10.1089/mdr.2011.0095
  3. Emergence of OXA-48 carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in dogs vol.68, pp.12, 2009, https://doi.org/10.1093/jac/dkt259
  4. Prevalence and Characterization of Antimicrobial-ResistantEscherichia coliIsolated from Conventional and Organic Vegetables vol.11, pp.10, 2014, https://doi.org/10.1089/fpd.2014.1771
  5. Characterization of CTX-M-14- and CTX-M-15-Producing Escherichia coli and Klebsiella pneumoniae Isolates from Urine Specimens in a Tertiary-Care Hospital vol.24, pp.6, 2009, https://doi.org/10.4014/jmb.1306.06036
  6. Prevalence of Quinolone Resistance Among Extended-Spectrum β -Lactamase Producing Uropathogenic Klebsiella pneumoniae vol.7, pp.6, 2009, https://doi.org/10.5812/jjm.10887
  7. Dissemination of Extended-Spectrum β-Lactamases and Quinolone Resistance Genes Among Clinical Isolates of Uropathogenic Escherichia coli in Children vol.8, pp.7, 2015, https://doi.org/10.5812/jjm.19184v2
  8. CTX-M-15형 Extended Spectrum β-lactamase와 ArmA 동시 생성 Enterobacter cloacae의 출현 vol.13, pp.12, 2015, https://doi.org/10.14400/jdc.2015.13.12.313
  9. The impact of production of extended-spectrum β-lactamases on the 28-day mortality rate of patients with Proteus mirabilis bacteremia in Korea vol.17, pp.None, 2009, https://doi.org/10.1186/s12879-017-2431-8
  10. The Usefulness of Active Surveillance Culture of Extended-Spectrum β-Lactamase-Producing Escherichia coli in ICU Settings without Outbreak in the Situation of Wide Spread of Sequence Type 131 ESB vol.21, pp.2, 2009, https://doi.org/10.5145/acm.2018.21.2.28
  11. Frequency of quinolone resistance genes among extended-spectrum β-lactamase (ESBL)-producing Escherichia coli strains isolated from urinary tract infections vol.47, pp.1, 2009, https://doi.org/10.1186/s41182-019-0147-8