DOI QR코드

DOI QR Code

Thromboxane $A_2$ modulates migration, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells

Yun, Doo-Hee;Song, Hae-Young;Lee, Mi-Jeong;Kim, Mi-Ra;Kim, Min-Young;Lee, Jung-Sub;Kim, Jae-Ho

  • Published : 20090100

Abstract

Prostanoid metabolites are key mediators in inflammatory responses, and accumulating evidence suggests that mesenchymal stem cells (MSCs) can be recruited to injured or inflamed tissues. In the present study, we investigated whether prostanoid metabolites can regulate migration, proliferation, and differentiation potentials of MSCs. We demonstrated herein that the stable thromboxane $A_2$ ($TxA_2$) mimetic U46619 strongly stimulated migration and proliferation of human adipose tissue-derived MSCs (hADSCs). Furthermore, U46619 treatment increased expression of $\alpha$-smooth muscle actin ($\alpha$-SMA), a smooth muscle marker, in hADSCs, suggesting differentiation of hADSCs into smooth muscle-like cells. U46619 activated ERK and p38 MAPK, and pretreatment of the cells with the MEK inhibitor U0126 or the p38 MAPK inhibitor SB202190 abrogated the U46619-induced migration, proliferation, and $\alpha$-SMA expression. These results suggest that $TxA_2$ plays a key role in the migration, proliferation, and differentiation of hADSCs into smooth muscle-like cells through signaling mechanisms involving ERK and p38 MAPK.

Keywords

References

  1. Barry FP, Murphy JM. Mesenchymal stem cells: clinicalapplications and biological characterization. Int J BiochemCell Biol 2004;36:568-84 https://doi.org/10.1016/j.biocel.2003.11.001
  2. Bos CL, Richel DJ, Ritsema T, Peppelenbosch MP, VersteegHH. Prostanoids and prostanoid receptors in signaltransduction. Int J Biochem Cell Biol 2004;36:1187-205 https://doi.org/10.1016/j.biocel.2003.08.006
  3. Chamberlain G, Fox J, Ashton B, Middleton J. Concisereview: mesenchymal stem cells: their phenotype, differentiationcapacity, immunological features, and potential forhoming. Stem Cells 2007;25:2739-49 https://doi.org/10.1634/stemcells.2007-0197
  4. Davani S, Marandin A, Mersin N, Royer B, Kantelip B, HerveP, Etievent JP, Kantelip JP. Mesenchymal progenitor cellsdifferentiate into an endothelial phenotype, enhancevascular density, and improve heart function in a rat cellularcardiomyoplasty model. Circulation 2003;108 Suppl 1:II253-II8 https://doi.org/10.1161/01.CIR.0000083831.17708.25
  5. Dogne JM, Hanson J, Pratico D. Thromboxane, prostacyclinand isoprostanes: therapeutic targets in atherogenesis.Trends Pharmacol Sci 2005;26:639-44 https://doi.org/10.1016/j.tips.2005.10.001
  6. Fox JM, Chamberlain G, Ashton BA, Middleton J. Recentadvances into the understanding of mesenchymal stem celltrafficking. Br J Haematol 2007;137:491-502 https://doi.org/10.1111/j.1365-2141.2007.06610.x
  7. Gojo S, Gojo N, Takeda Y, Mori T, Abe H, Kyo S, Hata J,Umezawa A. In vivo cardiovasculogenesis by direct injectionof isolated adult mesenchymal stem cells. Exp Cell Res2003;288:51-9 https://doi.org/10.1016/S0014-4827(03)00132-0
  8. Halushka PV, Mais DE, Mayeux PR, Morinelli TA. Thromboxane,prostaglandin and leukotriene receptors. Annu RevPharmacol Toxicol 1989;29:213-39 https://doi.org/10.1146/annurev.pa.29.040189.001241
  9. Hedges JC, Dechert MA, Yamboliev IA, Martin JL, Hickey E,Weber LA, Gerthoffer WT. A role for p38(MAPK)/HSP27 pathway in smooth muscle cell migration. J Biol Chem1999;274:24211-9 https://doi.org/10.1074/jbc.274.34.24211
  10. Huang C, Jacobson K, Schaller MD. MAP kinases and cellmigration. J Cell Sci 2004a;117:4619-28 https://doi.org/10.1242/jcs.01481
  11. Huang JS, Ramamurthy SK, Lin X, Le Breton GC. Cellsignalling through thromboxane A2 receptors. Cell Signal 2004b;16:521-33 https://doi.org/10.1016/j.cellsig.2003.10.008
  12. Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Bae YC, JungJS, Kim JH. Sphingosylphosphorylcholine induces differentiationof human mesenchymal stem cells into smoothmuscle-like cells through a TGF-{beta}-dependent mechanism.J Cell Sci 2006;119:4994-5005 https://doi.org/10.1242/jcs.03281
  13. Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Cho M, SuhDS, Yoon MS, Chang CL, Jung JS, Kim JH. Cancer-derivedlysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells. StemCells 2008;26:789-97 https://doi.org/10.1634/stemcells.2007-0742
  14. Klemke RL, Cai S, Giannini AL, Gallagher PJ, de LanerolleP, Cheresh DA. Regulation of cell motility by mitogenactivatedprotein kinase. J Cell Biol 1997;137:481-92 https://doi.org/10.1083/jcb.137.2.481
  15. Law RE, Meehan WP, Xi XP, Graf K, Wuthrich DA, Coats W,Faxon D, Hsueh WA. Troglitazone inhibits vascular smoothmuscle cell growth and intimal hyperplasia. J Clin Invest1996;98:1897-905 https://doi.org/10.1172/JCI118991
  16. Matsumoto T, Yokote K, Tamura K, Takemoto M, Ueno H,Saito Y, Mori S. Platelet-derived growth factor activates p38mitogen-activated protein kinase through a Ras-dependentpathway that is important for actin reorganization and cellmigration. J Biol Chem 1999;274:13954-60 https://doi.org/10.1074/jbc.274.20.13954
  17. Morinelli TA, Zhang LM, Newman WH, Meier KE. Thromboxane A2/prostaglandin H2-stimulated mitogenesis ofcoronary artery smooth muscle cells involves activation ofmitogen-activated protein kinase and S6 kinase. J Biol Chem1994;269:5693-8
  18. Negishi M, Sugimoto Y, Ichikawa A. Molecular mechanisms of diverse actions of prostanoid receptors. Biochim BiophysActa 1995;1259:109-19 https://doi.org/10.1016/0005-2760(95)00146-4
  19. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R,Mosca JD, Moorman MA, Simonetti DW, Craig S, MarshakDR. Multilineage potential of adult human mesenchymalstem cells. Science 1999;284:143-7 https://doi.org/10.1126/science.284.5411.143
  20. Ponte AL, Marais E, Gallay N, Langonne A, Delorme B,Herault O, Charbord P, Domenech J. The in vitro migrationcapacity of human bone marrow mesenchymal stem cells:comparison of chemokine and growth factor chemotacticactivities. Stem Cells 2007;25:1737-45 https://doi.org/10.1634/stemcells.2007-0054
  21. Prockop DJ. Marrow stromal cells as stem cells fornonhematopoietic tissues. Science 1997;276:71-4 https://doi.org/10.1126/science.276.5309.71
  22. Short B, Brouard N, Occhiodoro-Scott T, Ramakrishnan A,Simmons PJ. Mesenchymal stem cells. Arch Med Res2003;34:565-71 https://doi.org/10.1016/j.arcmed.2003.09.007
  23. Tilley SL, Coffman TM, Koller BH. Mixed messages: modulation of inflammation and immune responses by prostaglandinsand thromboxanes. J Clin Invest 2001;108:15-23 https://doi.org/10.1172/JCI13416
  24. Wang L, Li Y, Chen X, Chen J, Gautam SC, Xu Y, Chopp M.MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhancehuman bone marrow stromal cell migration in interfaceculture. Hematology 2002;7:113-7 https://doi.org/10.1080/10245330290028588
  25. Yoon YS, Wecker A, Heyd L, Park JS, Tkebuchava T, KusanoK, Hanley A, Scadova H, Qin G, Cha DH, Johnson KL, AikawaR, Asahara T, Losordo DW. Clonally expanded novelmultipotent stem cells from human bone marrow regeneratemyocardium after myocardial infarction. J Clin Invest 2005;115:326-38 https://doi.org/10.1172/JCI22326
  26. Reiss AB, Edelman SD. Recent insights into the role of prostanoids in atherosclerotic vascular disease. Curr Vasc Pharmacol 2006;4:395-408 https://doi.org/10.2174/157016106778521652

Cited by

  1. Icariin-mediated differentiation of mouse adipose-derived stem cells into cardiomyocytes vol.344, pp.1, 2009, https://doi.org/10.1007/s11010-010-0523-5
  2. Regulatory factors of mesenchymal stem cell migration into injured tissues and their signal transduction mechanisms vol.5, pp.1, 2009, https://doi.org/10.1007/s11684-011-0114-1
  3. TP receptor activation and inhibition in atherothrombosis: the paradigm of diabetes mellitus vol.6, pp.3, 2011, https://doi.org/10.1007/s11739-010-0440-3
  4. Influence of polyunsaturated fatty acids and their metabolites on stem cell biology vol.27, pp.1, 2009, https://doi.org/10.1016/j.nut.2010.04.003
  5. Alteration in contractile G-protein coupled receptor expression by moist snus and nicotine in rat cerebral arteries vol.252, pp.2, 2009, https://doi.org/10.1016/j.taap.2011.01.016
  6. Essential fatty acids and their metabolites as modulators of stem cell biology with reference to inflammation, cancer, and metastasis vol.30, pp.3, 2009, https://doi.org/10.1007/s10555-011-9316-x
  7. Human Endothelial Progenitor Cells Induce Extracellular Signal-Regulated Kinase-Dependent Differentiation of Mesenchymal Stem Cells into Smooth Muscle Cells upon Cocultivation vol.18, pp.23, 2009, https://doi.org/10.1089/ten.tea.2012.0147
  8. Thromboxane-induced actin polymerization in hypoxic pulmonary artery is independent of Rho vol.302, pp.1, 2009, https://doi.org/10.1152/ajplung.00016.2011
  9. An eicosanoid-centric view of atherothrombotic risk factors vol.69, pp.20, 2009, https://doi.org/10.1007/s00018-012-0982-9
  10. 중간엽 줄기세포의 평활근 세포로의 분화에서 LPS에 의해 활성화된 대식세포의 역할 vol.23, pp.1, 2009, https://doi.org/10.5352/jls.2013.23.1.137
  11. Concise Review: Regulation of Stem Cell Proliferation and Differentiation by Essential Fatty Acids and Their Metabolites vol.32, pp.5, 2014, https://doi.org/10.1002/stem.1620
  12. Human Trabecular Meshwork Cells Exhibit Several Characteristics of, but Are Distinct from, Adipose-Derived Mesenchymal Stem Cells vol.30, pp.2, 2009, https://doi.org/10.1089/jop.2013.0175
  13. Thromboxane A 2 Receptor Stimulation Promotes Closure of the Rat Ductus Arteriosus through Enhancing Neointima Formation vol.9, pp.4, 2009, https://doi.org/10.1371/journal.pone.0094895
  14. The role of albumin and PPAR‐α in differentiation‐dependent change of fatty acid profile during differentiation of mesenchymal stem cells to hepatocyte‐like cells vol.32, pp.5, 2009, https://doi.org/10.1002/cbf.3031
  15. Regulation of the Tumor Suppressor FOXO3 by the Thromboxane-A 2 Receptors in Urothelial Cancer vol.9, pp.9, 2009, https://doi.org/10.1371/journal.pone.0107530
  16. Inhibition of FAAH confers increased stem cell migration via PPARα vol.56, pp.10, 2009, https://doi.org/10.1194/jlr.m061473
  17. Thromboxane Governs the Differentiation of Adipose-Derived Stromal Cells Toward Endothelial Cells In Vitro and In Vivo vol.118, pp.8, 2009, https://doi.org/10.1161/circresaha.115.307853
  18. Decisive role of P42/44 mitogen-activated protein kinase in Δ 9 -tetrahydrocannabinol-induced migration of human mesenchymal stem cells vol.8, pp.62, 2009, https://doi.org/10.18632/oncotarget.22517
  19. Mechanochemical Effects on Extracellular Signal-Regulated Kinase Dynamics in Stem Cell Differentiation vol.24, pp.15, 2009, https://doi.org/10.1089/ten.tea.2017.0365
  20. 1 H-NMR and MALDI-TOF MS as metabolomic quality control tests to classify platelet derived medium additives for GMP compliant cell expansion procedures vol.13, pp.9, 2018, https://doi.org/10.1371/journal.pone.0203048
  21. Human mesenchymal stromal cells inhibit platelet activation and aggregation involving CD73-converted adenosine vol.9, pp.1, 2009, https://doi.org/10.1186/s13287-018-0936-8
  22. Resistin promotes cardiac homing of mesenchymal stem cells and functional recovery after myocardial ischemia-reperfusion via the ERK1/2-MMP-9 pathway vol.316, pp.1, 2009, https://doi.org/10.1152/ajpheart.00457.2018
  23. A Purification Technique for Adipose-Derived Stromal Cell Cultures Leads to a More Regenerative Cell Population vol.32, pp.5, 2009, https://doi.org/10.1080/08941939.2017.1423420
  24. Recombinant CC16 inhibits NLRP3/caspase-1-induced pyroptosis through p38 MAPK and ERK signaling pathways in the brain of a neonatal rat model with sepsis vol.16, pp.1, 2009, https://doi.org/10.1186/s12974-019-1651-9
  25. Autophagy plays a positive role in induction of epidermal proliferation vol.34, pp.8, 2009, https://doi.org/10.1096/fj.202000770rr
  26. Bioactive Lipids in MSCs Biology: State of the Art and Role in Inflammation vol.22, pp.3, 2009, https://doi.org/10.3390/ijms22031481
  27. Microelectromechanical System Measurement of Platelet Contraction: Direct Interrogation of Myosin Light Chain Phosphorylation vol.22, pp.12, 2009, https://doi.org/10.3390/ijms22126448