Atopic Dermatitis and Epidermal Barrier

아토피피부염과 피부장벽

Lee, Hyun-Hee
이현희

  • Published : 20090600

Abstract

Atopic dermatitis (AD) is a multifactorial, chronic inflammatory skin disease in which genetic mutations and cutaneous hyperreactivity to environment stimuli play a role. The skin barrier is known to be damaged in patients with AD, both in acute eczematous lesions and in clinically unaffected skin. Skin barrier function can be impaired first by a genetic predisposition to produce increased levels of stratum corneum chymotryptic enzyme. This protease enzyme causes premature breakdown of corneodesmosomes, leading to damage of the epidermal barrier. The addition of environmental interactions can increase production of stratum corneum chymotryptic enzyme and impair epidermal barrier function. The epidermal barrier can also be damaged by exogenous proteases. One or more of these factors in combination might lead to a defective barriers, after then increasing the risk of allergen penetration and succeeding inflammatory reaction, thus contributing to exacerbations of this disease. The strong association between both genetic barrier defects and environmental factors to the barrier with AD suggests that epidermal barrier dysfunction is a primary event in the development of this disease. New concepts into the relation of the epidermal barrier function and its interaction with components of the innate and adaptive immune responses in patients with AD give rise to novel treatments.

Keywords

References

  1. Elias PM, Wood LC, Feingold KR. Epidermal pathogenesis of inflammatory dermatoses. Am J Contact Dermatol 1999;10:119-26 https://doi.org/10.2165/00128071-200910020-00004
  2. Bieber T. Atopic dermatitis. N Engl J Med 2008;358:1483-94 https://doi.org/10.1056/NEJMra074081
  3. Leung DY. Atopic dermatitis: new insights and opportunities for therapeutic intervention. J Allergy Clin Immunol 2000;105:860-76 https://doi.org/10.1067/mai.2000.106484
  4. Yura A, Shimizu T. Trends in the prevalence of atopic dermatitis in school children : longitudinal study in Osaka Prefecture, Japan, from 1985 to 1997. Br J Dermatol 2001;115: 966-73
  5. Cork MJ, Robinson DA, Vasilopoulos Y, Ferguson A, Moustafa M, MacGowan A, et al. New perspectives on epidermal barrier dysfunction in atopic dermatitis : gene-environment interactions. J Allergy Clin Immunol 2006;118:3-21 https://doi.org/10.1016/j.jaci.2006.04.042
  6. Mecheleidt O, Kaiser HW, Sanhoff K. Deficiency of epidermal protein-bound omega-hydroxyceramides in atopic dermatitis. J Invest Dermatol 2002;119:166-73 https://doi.org/10.1046/j.1523-1747.2002.01833.x
  7. Hara J, Higuchi K, Okamoto R, Kawashima Y, Imokawa G. High-expression of sphingomyelin deacylase is an important determinant of ceramide deficiency leading to barrier disruption in atopic dermatitis. J Invest Dermatol 2000;115:406-13 https://doi.org/10.1046/j.1523-1747.2000.00072.x
  8. Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 2005;6:328-40 https://doi.org/10.1038/nrm1619
  9. Harding CR, Bartolone J, Rawlings AV. Effects of natural moisturizing factor and lactic isomers on skin function. In: Dry Skin & Moisturisers, Chemistry and Function, Dermatology: Clinical & Basic Science Series (Loden M, Maibach HI, eds), London, CRC Press, 2000:229-41
  10. Rawlings AV. Trends in stratum corneum research and the management of dry skin conditions. Int J Cosmetic Sci 2003;25:63-95 https://doi.org/10.1046/j.1467-2494.2003.00174.x
  11. Caubet C, Jonca N, Brattsand M, Guerrin M, Bernard D, Schmidt R, et al. Degradation of corneodesmosome protein by two serine proteases of the kallikrein family, SCTE/KLK5/ hK5 and SCCE/KLK7/hK7. J Invest Dermatol 2004;122:1235-44 https://doi.org/10.1111/j.0022-202X.2004.22512.x
  12. Thomas J, Georg S. Atopic dermatitis: Therapeutic concepts evolving from new pathophysiologic insights. J Allergy Clin Immunol 2008;122:1074-81 https://doi.org/10.1016/j.jaci.2008.09.042
  13. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 2006;38:441-6 https://doi.org/10.1038/ng1767
  14. Sandilands A, Terron-Kwiatkowski A, Hull PR, O'Regan GM, Clyton TH, Watson RM, et al. Comprehensive analysis of the gene encoding filaggrin uncovers prevalent and rare mutations in ichthyosis vulgaris and atopic eczema. Nat Genet 2007;39:650-4 https://doi.org/10.1038/ng2020
  15. Irvine AD. Fleshing out filaggrin phenotypes. J Invest Dermatol 2007;127:504-7 https://doi.org/10.1038/sj.jid.5700695
  16. Baurecht H, Irvine AD, Novak N, Illig T, Buhler B, Ring J, et al. Toward a major risk factor for atopic eczema: meta-analysis of filaggrin polymorphism data. J Allergy Clin Immunol 2007;120:1406-12 https://doi.org/10.1016/j.jaci.2007.08.067
  17. Sevilla LM, Nachat R, Groot KR, Klement JF, Uitto J, Djian P, et al. Mice deficient in involucrin, envoplakin, and periplakin have a defective epidermal barrier. J Cell Biol 2007; 179:1599-612 https://doi.org/10.1083/jcb.200706187
  18. Descargues P, Deraison C, Bonnart C, Kreft M, Kishibe M, Ishida-Yamamoto A, et al. Spink5-deficient mice mimic Netherton syndrom through degradation of desmoglein 1 by epidermal protease hyperactivity. Nat Genet 2005;37:56-65
  19. Negelkerken L, Verzaal P, Lagerweij T, Persoon- Deen C, Berbee JF, Prens EP, et al. Development of atopic dermatitis in mice transgenic for human apolipoprotein C1. J Invest Dermatol 2008;128:1165-72 https://doi.org/10.1038/sj.jid.5701182
  20. Hansson L, Backman A, Ny A, Edlund M, Eckholm E, Ekstrand Hammarstrom B, et al. Epidermal overexpression of SCCE in mice: a model for chronic itchy dermatitis. J Invest Dermatol 2002;118:444-9 https://doi.org/10.1046/j.0022-202x.2001.01684.x
  21. Borgono CA, Michael IP, Komatsu N, Jayakumar A, Kapadia R, Clayman GL, et al. A potential role for multiple tissue kallikrein serine proteases in epidermal desquamation. J Biol Chem 2007;282:3640-52 https://doi.org/10.1074/jbc.M607567200
  22. Emami N, Diamandis EP. Human kallikreinrelated peptidase 14 (KLK14) is a new activator component of the KLK proteolytic cascade. Possible function in seminal plasma and skin. J Biol Chem 2008;283:3031-41 https://doi.org/10.1074/jbc.M707253200
  23. Kato T, Tahai T, Mitsuishi K, Okumura K, Ogawa H. Cystatin A inhibits IL-8 production by keratinocytes stimulated with Der P1 and DER F1: biochemical skin barrier against house dust mites. J Allergy Clin Immunol 2005;116:169-76 https://doi.org/10.1016/j.jaci.2005.03.044
  24. Ishida-Yamamoto A, Deraison C, Bonnart C, Bitoun E, Robinson R, O Brien TJ, et al. LEKTI is localized in lamellar granules, separated from KLK5 and KLK7, and is secreted in the extracellular spaces of the superficial stratum granulosum. J Invest Dermatol 2005;124:360-6 https://doi.org/10.1111/j.0022-202X.2004.23583.x
  25. Deraison C, Bonnart C, Lopez F, Besson C, Robinson R, Jayakumar A, et al. LEKTI fragments specifically inhibit KLK5, KLK7, and KLK14 and control desquamation through a pH-dependent interaction. Mol Biol Cell 2007; 18:3607-19 https://doi.org/10.1091/mbc.E07-02-0124
  26. Kunz B, Ring J. Clinical features and diagnostic criteria of atopic dermatitis. In : Textbook of Pediatric Dermatology (Harper J, Oranje A, Prose N, eds) Oxford: Blackwell Science, 2003:199-214
  27. Lee Y, Hwang K. Skin thickness of Korean adults. Surg Radiol Anat 2002;24:183-9 https://doi.org/10.1007/s00276-002-0034-5
  28. Voegeli R, Rawlings AV, Doppler S, Schreier T. Increased basal transepidermal water loss leads to elevation of some but not all stratum corneum serine proteases. Int J Cosmet Sci 2008;30:435-42 https://doi.org/10.1111/j.1468-2494.2008.00472.x
  29. Nikolovski J, Stamatas GN, Kollias N, Wiegand BC. Barrier function and water- holding and transport properties of infant stratum corneum are different from adult and continue to develop through the first year of life. J Invest Dermatol 2008;128:1728-36 https://doi.org/10.1038/sj.jid.5701239
  30. Komatsu N, Saijoh K, Kuk C, Liu AC, Khan S, Shirasaki F, et al. Human tissue kallikrein expression in the stratum corneum and serum of atopic dermatitis patients. Exp Dermatol 2007;16:513-9 https://doi.org/10.1111/j.1600-0625.2007.00562.x
  31. Ananthapadmanabhan KP, Moore DJ, Subramanyan L, Misra M, Meyer F. Cleansing without compromise; the impact of cleansers on the skin barrier and the technology of mild cleansing. Dermatol Ther 2004;17(Suppl1): 16-25
  32. Torma H, Lindberg M, Berne B. Skin barrier disruption by sodium lauryl sulfate-exposure alters the expressions of involucrin, transglutaminase 1, profilaggrin, and kallikreins during the repair phase in human skin in vivo. J Invest Dermatol 2008;128:1212-9 https://doi.org/10.1038/sj.jid.5701170
  33. Jeong SK, Kim HJ, Youm JK, Ahn SK, Choi EH, Sohn MH, et al. Mite and cockroach allergens activate protease-activated receptor 2 and delay epidermal permeability barrier recovery. J Invest Dermatol 2008;128:1930-9 https://doi.org/10.1038/jid.2008.13
  34. Otto M. Virulence factors of the coagulasenegative staphylococci. Front Biosci 2004;9: 841-63 https://doi.org/10.2741/1295
  35. Kao JS, Fluhr JW, Man MQ, Flowler AJ, Hachem JP, Crumrine D, Short-term gluco corticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: inhibition of epidermal lipid synthesis accounts for functional abnormalities. J Invest Dermatol 2003;120:456-64 https://doi.org/10.1046/j.1523-1747.2003.12053.x
  36. O'Regan GM, Sandilands A, McLean WH, Irvine AD. Filaggrin in atopic dermatitis. J Allergy Clin Immunol 2008;122:689-93 https://doi.org/10.1016/j.jaci.2008.08.002