DOI QR코드

DOI QR Code

Structural, electrical and optical properties of sol–gel AZO thin films

Lee, Ka-Eun;Wang, Ming-Song;Kim, Eui-Jung;Hahn, Sung-Hong

  • Published : 20090500

Abstract

Transparent conductive Al-doped zinc oxide (AZO) thin films were prepared by a sol-gel method and their structural, electrical and optical properties were systematically investigated. A minimum resistivity of 4.2 ${\times}$ $10^{-3}$ $\Omega$ cm was obtained for the 650 $^{\circ}C$-annealed films doped with 1.0 at.% Al. All films had the preferential c-axis oriented texture according to the X-ray diffraction (XRD) results. Optical transmittance spectra of the films showed a high transmittance of over 85% in the visible region and the optical band gap of the AZO films broadened with increasing doping concentration.

Keywords

References

  1. I.-S. Jeong, J.H. Kim, S. Im, Appl. Phys. Lett. 83 (2003) 2946 https://doi.org/10.1063/1.1616663
  2. X. Jiang, F.L. Wong, M.K. Fung, S.T. Lee, Appl. Phys. Lett. 83 (2003) 1875 https://doi.org/10.1063/1.1605805
  3. M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science 292 (2001) 1897 https://doi.org/10.1126/science.1060367
  4. H.W. Lee, S.P. Lau, Y.G. Wang, K.Y. Tse, H.H. Hng, B.K. Tay, J. Cryst. Growth 268 (2004) 596 https://doi.org/10.1016/j.jcrysgro.2004.04.098
  5. S.J. Pearton, D.P. Norton, K. Ip, Y.W. Heo, T. Steiner, Prog. Mater. Sci. 50 (2005) 293 https://doi.org/10.1016/j.pmatsci.2004.04.001
  6. J. Hupkes, B. Rech, O. Kluth, T. Repmann, B. Zwaygardt, J. Muller, R. Drese, M. Wuttig, Sol. Energy Mater. Sol. Cells 90 (2006) 3054 https://doi.org/10.1016/j.solmat.2006.06.027
  7. R. Romero, M.C. Lopez, D. Leinen, F. Martin, J.R. Ramos-Barrado, Mater. Sci. Eng. B 110 (2004) 87 https://doi.org/10.1016/j.mseb.2004.03.010
  8. S. Fay, U. Kroll, C. Bucher, E. Vallat-Sauvain, A. Shah, Sol. Energy Mater. Sol. Cells 86 (2005) 385 https://doi.org/10.1016/j.solmat.2004.08.002
  9. M.J. Alam, D.C. Cameron, J. Vac. Sci. Technol. A 19 (2001) 1642 https://doi.org/10.1116/1.1340659
  10. M.S. Selim, M.C. Sekhar, A.R. Raju, Appl. Phys. A 79 (2004) 1215
  11. S.H. Jeong, J.W. Lee, S.B. Lee, J.H. Boo, Thin Solid Films 435 (2003) 78 https://doi.org/10.1016/S0040-6090(03)00376-6
  12. S. Maensiri, C. Masingboon, V. Promarak, S. Seraphin, Opt. Mater. 29 (2007) 1700 https://doi.org/10.1016/j.optmat.2006.09.011
  13. S.-Y. Kuo, W.-C. Chen, F.-I. Lai, C.-P. Cheng, H.-C. Kuo, S.-C. Wang, W.-F. Hsieh, J. Cryst. Growth 287 (2006) 78 https://doi.org/10.1016/j.jcrysgro.2005.10.047
  14. R. Cebulla, R. Werndt, K. Ellmer, J. Appl. Phys. 83 (1998) 1087 https://doi.org/10.1063/1.366798
  15. L.K. Rao, V. Vinni, Appl. Phys. Lett. 63 (1993) 608 https://doi.org/10.1063/1.109964
  16. Y.T. Zhang, G.T. Du, X.Q. Wang, W.C. Li, X.T. Yang, Y. Ma, B.J. Zhao, H.J. Yang, D.L. Liu, S.R. Yang, J. Cryst. Growth 252 (2003) 180 https://doi.org/10.1016/S0022-0248(02)02481-8
  17. D.-P. Kim, J.-W. Yeo, C.-I. Kim, Thin Solid Films 459 (2004) 122 https://doi.org/10.1016/j.tsf.2003.12.113
  18. H.-M. Zhou, D.-Q. Yi, Z.-M. Yu, L.-R. Xiao, J. Li, Thin Solid Films 515 (2007) 6909 https://doi.org/10.1016/j.tsf.2007.01.041
  19. K.C. Park, D.Y. Ma, K.H. Kim, Thin Solid Films 305 (1997) 201 https://doi.org/10.1016/S0040-6090(97)00215-0
  20. A.F. Aktaruzzaman, G.L. Sharma, L.K. Malhotra, Thin Solid Films 198 (1991) 67 https://doi.org/10.1016/0040-6090(91)90325-R
  21. B.E. Sernelius, K.F. Berggren, Z.C. Jim, I. Hamberg, C.G. Granqvist, Phys. Rev. B 37 (1988) 10244 https://doi.org/10.1103/PhysRevB.37.10244
  22. F.K. Shan, Y.S. Yu, J. Eur. Ceram. Soc. 24 (2004) 1869 https://doi.org/10.1016/S0955-2219(03)00490-4

Cited by

  1. Optical properties of colloids formed in copper-tin sulfate solution containing Rhodamine B vol.481, pp.1, 2009, https://doi.org/10.1016/j.jallcom.2009.03.064
  2. Electrical and optical properties of molybdenum-doped ZnO transparent conductive thin films prepared by dc reactive magnetron sputtering vol.24, pp.12, 2009, https://doi.org/10.1088/0268-1242/24/12/125012
  3. 플렉시블 디스플레이 적용을 위한 ITO:Ce/PET 박막의 물성평가 vol.42, pp.6, 2009, https://doi.org/10.5695/jkise.2009.42.6.276
  4. Structural, electrical and optical properties of Dy doped ZnO thin films grown by buffer assisted pulsed laser deposition vol.42, pp.6, 2009, https://doi.org/10.1016/j.physe.2010.02.005
  5. Synthesis of nanosized β-BiTaO4by the polymeric precursor method vol.64, pp.9, 2009, https://doi.org/10.1016/j.matlet.2010.02.020
  6. Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures vol.210, pp.1, 2011, https://doi.org/10.1016/j.powtec.2011.02.005
  7. Transparent conductive Al-doped ZnO thin films grown at room temperature vol.29, pp.3, 2009, https://doi.org/10.1116/1.3565462
  8. Effect of Oxygen Gas Pressure on Electrical, Optical, and Structural Properties of Al-Doped ZnO Thin Films Fabricated by Pulsed Laser Deposition for Use as Transparent Electrodes in All-Solid-State El vol.50, pp.8, 2009, https://doi.org/10.7567/jjap.50.08jd09
  9. Influence of hydrogen plasma treatment on Al-doped ZnO thin films for amorphous silicon thin film solar cells vol.11, pp.1, 2011, https://doi.org/10.1016/j.cap.2010.11.109
  10. Effects of thickness and annealing on the properties of Ti-doped ZnO films by radio frequency magnetron sputtering vol.11, pp.1, 2011, https://doi.org/10.1016/j.cap.2010.11.110
  11. Relationship between Structure and Functional Properties of the ZnO:Al Thin Films vol.675, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/msf.675-677.1275
  12. Optical and electrical properties of Bi doped ZnO thin films deposited by ultrasonic spray pyrolysis vol.22, pp.5, 2009, https://doi.org/10.1007/s10854-010-0167-y
  13. Electromagnetic Radiation Effect on ZnO Nanocrystallites vol.312, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/ddf.312-315.836
  14. Electromagnetic Radiation Effect on ZnO Nanocrystallites vol.312, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/ddf.312-315.836
  15. Influence of Substrate Temperature on the Properties of Al-Doped Zinc Oxide Films Prepared by DC Reactive Magnetron Sputtering vol.239, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amr.239-242.1626
  16. Microstructure and Electrical Properties of AZO Films Prepared by RF Magnetron Sputtering vol.264, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amr.264-265.754
  17. Influence of Al Doping on the Properties of ZnO Thin Films Grown by Atomic Layer Deposition vol.115, pp.25, 2009, https://doi.org/10.1021/jp2023567
  18. Moisture-Induced Surface Corrosion in AZO Thin Films Formed by Atomic Layer Deposition vol.12, pp.2, 2009, https://doi.org/10.1109/tdmr.2012.2186574
  19. Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer vol.7, pp.1, 2009, https://doi.org/10.1186/1556-276x-7-29
  20. ZnO:Al thin films used in ZnO: Al/p-Si heterojunctions vol.61, pp.3, 2009, https://doi.org/10.1007/s10971-011-2668-4
  21. Effects of Rapid Thermal Annealing on Structural, Luminescent, and Electrical Properties of Al-Doped ZnO Films Grown by Atomic Layer Deposition vol.1, pp.3, 2009, https://doi.org/10.1149/2.015203jss
  22. Zno Nanorod Synthesis via Controlled ZnO Seed Layer by Filtered Pulse Cathodic Vacuum Arc: Luminescence Enhancement vol.802, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amr.802.1
  23. Effects of Doping Ratio and Thermal Annealing on Structural and Electrical Properties of Boron-Doped ZnO Thin Films by Spray Pyrolysis vol.52, pp.r6, 2013, https://doi.org/10.7567/jjap.52.065502
  24. Development of aluminum-doped ZnO films for a-Si:H/μc-Si:H solar cell applications vol.34, pp.6, 2009, https://doi.org/10.1088/1674-4926/34/6/063004
  25. EFFECT OF Al DOPING CONCENTRATION ON MICROSTRUCTURE, PHOTOELECTRIC PROPERTIES AND DOPED MECHANISM OF AZO FILMS vol.21, pp.3, 2009, https://doi.org/10.1142/s0218625x14500401
  26. Semiconductor to metal transition in degenerate ZnO: Al films and the impact on its carrier scattering mechanisms and bandgap for OLED applications vol.25, pp.3, 2014, https://doi.org/10.1007/s10854-014-1758-9
  27. Damp heat stability of AZO transparent electrode and influence of thin metal film for enhancing the stability vol.25, pp.7, 2009, https://doi.org/10.1007/s10854-014-2004-1
  28. Effect of annealing temperature on properties of spin coated AZO films vol.18, pp.4, 2009, https://doi.org/10.1179/1432891714z.000000000767
  29. Sol-gel synthesis of calcium hydroxyapatite thin films on quartz substrate using dip-coating and spin-coating techniques vol.71, pp.3, 2009, https://doi.org/10.1007/s10971-014-3394-5
  30. Effect of Multiple Frequency H2/Ar Plasma Treatment on the Optical, Electrical, and Structural Properties of AZO Films vol.42, pp.12, 2009, https://doi.org/10.1109/tps.2014.2361640
  31. Surface structure and photoluminescence properties of AZO thin films on polymer substrates vol.47, pp.1, 2009, https://doi.org/10.1002/sia.5677
  32. Effect of the Growth Parameters on Nonlinear Optical Properties of Al‐Doped ZnO Nano Films vol.12, pp.2, 2009, https://doi.org/10.1111/ijac.12152
  33. High Performance Ti-Doped ZnO TFTs With AZO/TZO Heterojunction S/D Contacts vol.11, pp.5, 2009, https://doi.org/10.1109/jdt.2015.2405542
  34. Transparent electrodes made from carbon nanotube polyelectrolytes and application to acidic environments vol.30, pp.13, 2009, https://doi.org/10.1557/jmr.2015.166
  35. Sn-doped ZnO thin-film transistors with AZO, TZO and Al heterojunction source/drain contacts vol.52, pp.4, 2009, https://doi.org/10.1049/el.2015.3277
  36. Surface and Near Surface Area Density of States for Magnetron-Sputtered ZnO and Al-ZnO: A MIES, UPS, and VBXPS Study Investigating Ultrahigh Vacuum Sputter Cleaning and UV Oxygen Plasma vol.120, pp.29, 2009, https://doi.org/10.1021/acs.jpcc.5b11631
  37. The effect of annealing temperature on the optical and electrical properties of cubic MgZnO films grown by RF magnetron sputtering vol.28, pp.2, 2009, https://doi.org/10.1007/s10854-016-5707-7
  38. Influence of AZO amorphous structure on n-AZO/p-Cu2O heterojunction diode photoluminescence properties vol.28, pp.13, 2009, https://doi.org/10.1007/s10854-017-6678-z
  39. Electron tunneling through grain boundaries in transparent conductive oxides and implications for electrical conductivity: the case of ZnO:Al thin films vol.5, pp.4, 2009, https://doi.org/10.1039/c8mh00402a
  40. Infrared metamaterial by RF magnetron sputtered ZnO/Al:ZnO multilayers vol.8, pp.3, 2009, https://doi.org/10.1063/1.5024900
  41. Study of the metal-semiconductor contact to ZnO films vol.155, pp.None, 2018, https://doi.org/10.1016/j.vacuum.2018.06.017
  42. Transparent Electronics Using One Binary Oxide for All Transistor Layers vol.14, pp.51, 2018, https://doi.org/10.1002/smll.201803969
  43. Single step route to highly transparent, conductive and hazy aluminium doped zinc oxide films vol.8, pp.74, 2009, https://doi.org/10.1039/c8ra09338e
  44. Increasing the Electron Mobility of ZnO-Based Transparent Conductive Films Deposited by Open-Air Methods for Enhanced Sensing Performance vol.1, pp.12, 2009, https://doi.org/10.1021/acsanm.8b01745
  45. Three-level system for numerical modeling of ultraviolet and visible photoluminescence of aluminum-doped zinc oxide vol.36, pp.4, 2009, https://doi.org/10.1364/josab.36.001017
  46. Preparation of excellent electrical conductivity aluminum doped zinc oxide powders by one-step solvothermal method vol.6, pp.8, 2019, https://doi.org/10.1088/2053-1591/ab1d33
  47. Cu(Zn,Sn)(S,Se)2 Solar Cells with a Nanocomposite Window Layer Produced by Totally Nonvacuum Methods vol.48, pp.9, 2009, https://doi.org/10.1007/s11664-019-07147-0
  48. The effect of crystallinity on the surface modification and optical properties of ZnO thin films vol.22, pp.4, 2009, https://doi.org/10.1039/c9cp05464b
  49. Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells vol.120, pp.4, 2009, https://doi.org/10.1021/acs.chemrev.9b00483
  50. Spray Pyrolysis Deposition of Al‐Doped ZnO Thin Films for Potential Picosecond Extreme Ultraviolet Scintillator Applications vol.257, pp.8, 2009, https://doi.org/10.1002/pssb.201900481
  51. Tailoring Bandgap and Electrical Properties of Magnesium-Doped Aluminum Zinc Oxide Films Deposited by Reactive Sputtering Using Metallic Mg and Al-Zn Targets vol.10, pp.8, 2009, https://doi.org/10.3390/coatings10080708
  52. Enhancement of optoelectronic properties of ZnO thin films by Al doping for photodetector applications vol.151, pp.None, 2009, https://doi.org/10.1016/j.spmi.2020.106790
  53. High-mobility ZnVxOy/ZnO conduction path in ZnO/V/ZnO multilayer structure vol.130, pp.7, 2009, https://doi.org/10.1063/5.0053360
  54. Preparation of AZO/Cu/AZO films with low infrared emissivity, high conductivity and high transmittance by adjusting the AZO layer vol.578, pp.None, 2009, https://doi.org/10.1016/j.apsusc.2021.152051