DOI QR코드

DOI QR Code

Thermal Plasma Analysis for the Pyrolysis of PFCs on a Large Scale

Choi, Sooseok;Lee, Hyun Seok;Kim, Sungwoo;Hong, Sang Hee;Park, Dong-Wha

  • Published : 20091100

Abstract

The effects of the arc current and the gas flow rate in a plasma torch on the thermal plasma decomposition process have been analyzed to improve its economic feasibility for the pyrolysis of perfluorocompounds (PFCs). A 200-slpm waste gas mixture of 1 % $CF_4$ and 99 % $N_2$ purging gas was decomposed by using a nitrogen thermal plasma generated by using a plasma torch with hollow electrodes. A thermal efficiency of over 50 % was achievable with a torch input power of 40 kW operated at 150 A and 70 slpm as a result of a stable attachment of the cathodic arc root near the plasma gas injection area. Measurements in the thermal plasma pyrolysis showed a more than 96 % destruction and removal efficiency (DRE) of $CF_4$, which turned out to be mainly affected by the net plasma thermal power, which depended on the thermal efficiency of the torch, regardless of the input electric power. The plasma torch operated with a higher gas flow rate showed an increased $CF_4$ DRE by enhancing the turbulent mixing effects of the thermal plasma jet having a relatively higher axial velocity with a steep gradient from the reactor entrance. However, a higher flow-rate gas disturbs the cathodic arc attachment around the gas injection area, which causes a considerably increased electric power consumption. Plasma torch operation at a low gas flow rate and high current is expected to be effective in increasing its thermal efficiency with a sufficiently high DRE for industrial application of thermal plasma pyrolysis to the treatment of PFCs due to its low running cost for electric power and working gas.

Keywords

References

  1. A. R, Ravishankara, S. Solomon, A. A. Turnipseed and R. F. Warren, Sci. 259, 194 (1993) https://doi.org/10.1126/science.259.5092.194
  2. H. Chae and H. H. Sawin, J. Korean Phys. Soc. 51, 978 (2007) https://doi.org/10.3938/jkps.51.978
  3. J. V. Gompel and T. Walling, Semicond. Int. 20, 95 (1997)
  4. D. R. Burgess, Jr., M. R. Zachariah, W. Tsang and P. R. Westmoreland, Prog. Energy Combust. Sci. 21, 453 (1996) https://doi.org/10.1016/0360-1285(95)00009-7
  5. Y. Kim, K. T. Kim, M. S. Cha, Y. H. Song and S. J. Kim, IEEE Trans. Plasma Sci. 33, 1041 (2005) https://doi.org/10.1109/TPS.2005.848616
  6. S. J. Yu and M. B. Jang, Plasma Chem. Plasma Proc. 21, 311 (2001)
  7. B. A. Wofford, M. W. Jackson, C. Hartz and J. W. Bevan, Env. Sci. Tech. 33, 1892 (1999) https://doi.org/10.1021/es9805472
  8. T. Kuroki, J. Mine, S. Odahara, M. Okubo, T. Yamamoto and N. Saeki, IEEE Trans. Ind. Appl. 41, 221 (2005) https://doi.org/10.1109/TIA.2004.840954
  9. M. B. Jang and J. S. Chang, Ind. Eng. Chem. Res. 45, 4101 (2006) https://doi.org/10.1021/ie051227b
  10. C. L. Hartz, J. W. Ban, M. W. Jackson and B. A. Wofford, Env. Sci. Tech. 32, 682 (1998) https://doi.org/10.1021/es9706514
  11. J. W. Sun and D. W. Park, Kor. J. Chem. Eng. 30, 476 (2003)
  12. S. Choi, H. S. Lee, C. H. Lee, J. S. Nam and S. H. Hong, 18th Int. Symp. Plasma Chem. (Kyoto, 2007)
  13. M. Hur, K. S. Kim and S. H. Hong, Plasma Sour. Sci. Tech. 12, 255 (2003) https://doi.org/10.1088/0963-0252/12/2/317
  14. S. Choi, T. H. Hwang, J. H. Seo, D. U. Kim and S. H. Hong, IEEE Trans. Plasma Sci. 32, 473 (2004) https://doi.org/10.1109/TPS.2004.826365
  15. M. Hur and S. H. Hong, J. Phys. D: Appl. Phys. 35, 1946 (2002) https://doi.org/10.1088/0022-3727/35/16/308
  16. K. S. Kim, T. H. Hwang, S. Choi, S. H. Hong and H. Shin, J. Korean Phys. Soc. 42, S893 (2003) https://doi.org/10.3938/jkps.42.893
  17. K. S. Kim, J. M. Park, S. Choi, J. Kim and S. H. Hong, Phys. Plasmas 15, 023501 (2008) https://doi.org/10.1063/1.2825670
  18. J. F. Brilhac, B. Pateyron, J. F. Coudert, P. Fauchais and A. Bouvier, Plasma Chem. Plasma Proc. 15, 257 (1995) https://doi.org/10.1007/BF01459699
  19. H. P. Li, E. Pfender and X. Chen, J. Phys. D: Appl. Phys. 36, 1084 (2003) https://doi.org/10.1088/0022-3727/36/9/306
  20. E. Pfender, Thin Solid Films 238, 228 (1994) https://doi.org/10.1016/0040-6090(94)90060-4

Cited by

  1. THERMAL PLASMA DECOMPOSITION OF FLUORINATED GREENHOUSE GASES vol.44, pp.1, 2012, https://doi.org/10.5516/net.77.2012.003
  2. Numerical Simulation of Thermal Plasma Gasification Process vol.799, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amm.799-800.90
  3. Plasma-Chemical Treatment of Process Gases with Low-Concentration Fluorine-Containing Components vol.37, pp.1, 2009, https://doi.org/10.1007/s11090-016-9755-9
  4. Numerical analysis of thermal plasma scrubber for CF4 decomposition vol.21, pp.6, 2019, https://doi.org/10.1088/2058-6272/aafbba
  5. Plasma Technology and Its Relevance in Waste Air and Waste Gas Treatment vol.12, pp.21, 2020, https://doi.org/10.3390/su12218981