Fabrication and Properties of GaN MIS Capacitors with a Remote-Plasma Atomic-Layer-Deposited $Al_2O_3$ Gate Dielectric

Yun, Hyeong-Seon;Kim, Kwang-Ho

  • Published : 20090200

Abstract

$Al_2O_3$ thin films were deposited on GaN (0001) by using a remote-plasma atomic-layer-deposition (RPALD) technique with a trimethylaluminum(TMA) precursor and oxygen radicals in the temperature range of 25 $\sim$ 500 $^{\circ}C$. The growth rate per cycle was varied with the substrate temperature from 1.8 $\AA$/cycle at 25 $^{\circ}C$ to 0.8 $\AA$/cycle at 500 $^{\circ}C$. The chemical structure of the $Al_2O_3$ thin films was studied using X-ray photoelectron spectroscopy (XPS). The electrical properties of $Al_2O_3$/GaN Metal-Insulator-Semiconductor (MIS) capacitor grown at a 300 $^{\circ}C$ process temperature were excellent, a low electrical leakage current density (${\sim}10^{-10}$ A/$cm^2$ at 1 MV) at room temperature and a high dielectric constant of about 7 with a thinner oxide thickness of 12 nm. The interface trap density ($D_{it}$) was estimated using a high-frequency C-V method measured at 300 $^{\circ}C$. These results show that the RPALD technique is an excellent choice for depositing high-quality $Al_2O_3$ as a gate dielectric in GaN-based devices.

Keywords

References

  1. T. P. Chow and R. Tyagi, IEEE Electron Devices Lett. 41, 1481 (1994) https://doi.org/10.1109/16.297751
  2. B. Gaffey, L. J. Guido, X. W. Wang and T. P. Ma, IEEE Electron Devices Lett. 48, 458 (2001) https://doi.org/10.1109/16.906436
  3. M. Asif Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska and M. S. Shur, IEEE Electron Devices Lett. 21, 63 (2000) https://doi.org/10.1109/55.821668
  4. M. Asif Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska and M. S. Shur, Appl. Phys. Lett. 77, 1339 (2000) https://doi.org/10.1063/1.1290269
  5. A. Koudymov, X. Hu, K. Simin, G. Simin, M. Ali, J. Yang and M. A. Khan, IEEE Electron Devices Lett. 23, 449 (2002) https://doi.org/10.1109/LED.2002.801301
  6. G. Simin, A. Koudymov, H. Fatima, J. Zhang, J. Yang, M. A. Khan, X. Hu, A. Tarakji, R. Gaska and M. S. Shur, IEEE Electron Devices Lett. 23, 458 (2002) https://doi.org/10.1109/LED.2002.801316
  7. G. Simin, X. Hu, N. Ilinskaya, J. Zhang, A. Tarakji, A. Kumar, M. A. Khan, M. S. Shur and R. Gaska, IEEE Electron Devices Lett. 22, 53 (2002)
  8. X. Hu, A. Koudymov, G. Simon, J. Yang, M. A. Khan, A. Tarakji, M. S. Shur and R. Gaska, Appl. Phys. Lett. 79, 2832 (2000)
  9. P. D. Ye, B. Yang, K. Ng, J. Bude, G. D. Wilk, S. Halder and J. C. M. Hwang, Appl. Phys. Lett. 86, 063501-1 (2005) https://doi.org/10.1063/1.1861122
  10. T. Hashizume, S. Ootomo and H. Hasegawa, Appl. Phys. Lett. 83, 2952 (2003) https://doi.org/10.1063/1.1616648
  11. R. Mehandru, B. Luo, J. Kim, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy, S. J. Pearton, D. Gotthold, R. Birkhahn, B. Peres, R. Fitch, J. Gillespie, T. Jenkins, J. Sewell, D. Via and A. Crespo, Appl. Phys. Lett. 82, 2530 (2003) https://doi.org/10.1063/1.1567051
  12. J. W. Johnson, B. Luo, F. Ren, B. P. Gila, W. Krish-namoorthy, C. R. Abernathy, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee and C. C. Chuo, Appl. Phys. Lett. 77, 3230 (2000) https://doi.org/10.1063/1.1326041
  13. M. D. Groner, J. W. Elam, F. H. Fabreguette and S. M. George, Thin Solid Films 413, 186 (2002) https://doi.org/10.1016/S0040-6090(02)00438-8
  14. S. M. George, A. W. Ott and J. W. Klaus, J. Phys. Chem. 100, 13121 (1996) https://doi.org/10.1021/jp9536763
  15. J. H. Koo, S. H. Kim, S. M. Jeon, H. T. Jeon, Y. D. Kim and Y. D. Won, J. Korean Phys. Soc. 48, 131 (2006)
  16. Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Eden Prairie, MN, 1992), p. 55
  17. S. K. Kim, S. W. Lee, C. S. Hwang, Y. S. Min, J. Y.Won and J. Jeong, J. Electrochemical Soc. 153, F69 (2006) https://doi.org/10.1149/1.2177047
  18. L. M. Terman, Solid-State Electronics 5, 285 (1962)
  19. K. H. Kim, Y. S. Kim, S. H. Jeong and S. W. Jung, J. Korean Phys. Soc. 48, 275 (2006)