DOI QR코드

DOI QR Code

Analysis of Phosphorylation of the BRI1/BAK1 Complex in Arabidopsis Reveals Amino Acid Residues Critical for Receptor Formation and Activation of BR Signaling

  • Yun, Hye Sup (Department of Life Science, Chung-Ang University) ;
  • Bae, Young Hee (Division of Biological Science, Sookmyung Women's University) ;
  • Lee, Yun Ji (Division of Biological Science, Sookmyung Women's University) ;
  • Chang, Soo Chul (University College, Yonsei University) ;
  • Kim, Seong-Ki (Department of Life Science, Chung-Ang University) ;
  • Li, Jianming (Department of Molecular, Cellular, and Developmental Biology, University of Michigan) ;
  • Nam, Kyoung Hee (Division of Biological Science, Sookmyung Women's University)
  • Received : 2008.10.13
  • Accepted : 2008.11.25
  • Published : 2009.02.28

Abstract

The plasma membrane-localized BRASSINOSTEROID-INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED KINASE1 (BAK1) are a well-known receptor pair involved in brassinosteroids (BR) signaling in Arabidposis. The formation of a receptor complex in response to BRs and the subsequent activation of cytoplasmic domain kinase activity share mechanistic characteristics with animal receptor kinases. Here, we demonstrate that BRI1 and BAK1 are BR-dependently phosphorylated, and that phosphorylated forms of the two proteins persist for different lengths of time. Mutations of either protein abolished phosphorylation of the counterpart protein, implying transphosphorylation of the receptor kinases. To investigate the specific amino acids critical for formation of the receptor complex and activation of BAK1 kinase activity, we expressed several versions of BAK1 in yeast and plants. L32E and L46E substitutions resulted in a loss of binding of BAK1 to BRI1, and threonine T455 was essential for the kinase activity of BAK1 in yeast. Transgenic bri1 mutant plants overexpressing BAK1(L46E) displayed reduced apical dominance and seed development. In addition, transgenic wild type plants overexpressing BAK1(T455A) lost the phosphorylation activity normally exhibited in response to BL, leading to semi-dwarfism. These results suggest that BAK1 is a critical component regulating the duration of BR efficacy, even though it cannot directly bind BRs in plants.

Keywords

Acknowledgement

Supported by : Korea Research Foundation, Sookmyung Women's University

References

  1. Asami, T., Min, Y.K., Nagata, N., Yamaguchi, K., Takatsuto, S., Fujioka, S., Murofushi, N., Yamaguchi, I., and Yoshida, S. (2000). Characterization of brassinazole, a triazole-type brassinosteroid biosynthesis inhibitor. Plant Physiol. 123, 93-100 https://doi.org/10.1104/pp.123.1.93
  2. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  3. Burgess, A.W., Cho, H.S., Eigenbrot, C., Furguson, K.M., Gareet T.P., Leahy, D.J., Lemmon, M.A., Sliwkowski, M.X., Ward, C.W., Yokoyama, S. (2003). An open-and-shut case? Recent insights into the activation of EGF/ErbB receptors. Mol. Cell 12, 541-552 https://doi.org/10.1016/S1097-2765(03)00350-2
  4. Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D.G., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defense. Nature 448, 497-500 https://doi.org/10.1038/nature05999
  5. Chono M., Honda I., Zeniya H., Yoneyama K., Saisho D., Takeda K., Takatsuto S., Hoshino T., and Watanabe Y.(2003). A semidwarf phenotype of barley uzu results from a nucleotide substitution in the gene encoding a putative brassinosteroid receptor, Plant Physiol. 133, 1209-1219 https://doi.org/10.1104/pp.103.026195
  6. Clause, S.D., and Sasse, J.M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49, 427-451 https://doi.org/10.1146/annurev.arplant.49.1.427
  7. Ehsan, H., Ray, W.K., Phinney, B., Wang, X., Huber, S.C., Clause, S.D. (2005). Interaction of Arabidopsis BRASSINOSTEROID-INSENSITIVE 1 receptor kinase with a homolog of mammalian TGF-beta receptor interacting protein. Plant J. 43, 251-261 https://doi.org/10.1111/j.1365-313X.2005.02448.x
  8. Friedrichsen, D.M., Joazeiro, C.A., Li, J., Hunter, T., and Chory, J. (2003). Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase. Plant Physiol. 123, 1247-1256 https://doi.org/10.1104/pp.123.4.1247
  9. Goda, H., Shimada, Y., Asmami, T., Fujioka, S., and Yishida, S. (2002). Microarray analysis of brassinostroid-regulated genes in Arabidopsis. Plant Physiol. 130, 1319-1334 https://doi.org/10.1104/pp.011254
  10. Goda, H., Sawa, S., Asami, T., Fujioka, S., Shimada, Y., Yoshida, S. (2004). Comprehensive comparison of auxin-regulated and brassinosteroid-regulated genes in Arabidopsis. Plant Physiol. 134, 1555-1573 https://doi.org/10.1104/pp.103.034736
  11. He, Z., Gendron, J. M., Yang, Y., Li, J., and Wang, Z.Y. (2002). The GSK3-like kinase BIN2 phosphorylates abd destabilized BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc. Nat. Acad. Sci. USA 99, 10185-10190 https://doi.org/10.1073/pnas.152342599
  12. Hecht, V., Vielle-Calzada, J., Hartog, M.V., Schmidt, E.D.L., Boutilier, K., Grossniklasu, U., and de Vries, S.C. (2001) The Arabidopsis SOMATIC EMBRYOGENESIS RECEPROE KINASE 1 gene is expressed in developing ovule and embryos and enhances embryogenic competence in culture. Plant Physiol. 127, 803-816 https://doi.org/10.1104/pp.010324
  13. Heese, A., Hann, D.R., Glimenez-Ibanez, S., Jones, A.M.E., He, K., Li, J., Schroeder, J.I., Peck, S.C., and Rathjen, J.P. (2007). The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. USA 104, 12217-12222 https://doi.org/10.1073/pnas.0705306104
  14. Karlova, R., Boeren, S., Russinova, E., Aker, J., Vervoort, J., and de Vries, S.C. (2006). The Arabidopsis SOMATIC EMBRYOGENE-SIS RECEPTOR-LIKE KINASE1 protein complex includes BRASSINOSTEROID-INSENSITIVE 1. Plant Cell 18, 626-638 https://doi.org/10.1105/tpc.105.039412
  15. Kinoshita, T., Cano-Delgado, A., Seto, H., Hiranuma, S., Fujuika, S., and Chory, J. (2005). Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433, 167-171 https://doi.org/10.1038/nature03227
  16. Li, J., and Chory. M. (1997). A putative leucine-rich repeat receptor kinase involve in brassinosteroid signal transduction. Cell 90, 927-938
  17. Li, J., and Nam, K.H. (2002). Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295, 1299-1301
  18. Li, J., Wen, J., Lease, K.A., Dorke, J.T., Tax, F.E., and Walker, J.C. (2002). BAK1, an Arabidopsis LRR receptor-like kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213-222 https://doi.org/10.1016/S0092-8674(02)00812-7
  19. Liu, Z.B., Ulmasov, T., Shi, X.Y., Hagen, G., and Guilfoyle, T.L. (1994). Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6, 645-657 https://doi.org/10.1105/tpc.6.5.645
  20. Massague, J. (1998). TGF-beta signal transduction. Annu. Rev. Biochem. 67, 753-791 https://doi.org/10.1146/annurev.biochem.67.1.753
  21. Mitchell, J.W., Mandava, N.B., Worley, J.F., Plimmer, J.R., and Smith, M.V. (1970). Brassins: a new family of plant hormones from rape pollen. Nature 225, 1065-1066 https://doi.org/10.1038/2251065a0
  22. Mora-Garcia, S., Vert, G., Yin, Y., Cano-Delgado, A., Cheong, H., and Chory, J. (2004). Nuclear protein phosphatase with Kelch-repeat domains modulates the response to brassinosteroids in Arabidopsis. Genes Dev. 18, 448-460 https://doi.org/10.1101/gad.1174204
  23. Nam, K.H., and Li, J. (2002). BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110, 203-212 https://doi.org/10.1016/S0092-8674(02)00814-0
  24. Nam, K.H., and Li, J. (2004). The Arabidopsis transthyretin-like protein is a potential substrate of BRASSINOSTEROID-INSENSITIVE 1. Plant Cell 16, 2406-2417 https://doi.org/10.1105/tpc.104.023903
  25. Noguchi, T., Fusioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K.A., and Tax, F.E. (1999). Brassinoster-oid-insensitive dwarf mutants of Arabidopsis accumulates brass-inosteroids. Plant Physiol. 121, 743-752 https://doi.org/10.1104/pp.121.3.743
  26. Nomura, T., Kitasaka, Y., Takatsuto, S., Reid, J.B., Fukami, M., and Yokoda, T. (1999). Brassinosteroid/sterol synthesis and plant growth as affected by lka and lkb mutations of peas. Plant Physiol. 119, 1517-1526 https://doi.org/10.1104/pp.119.4.1517
  27. Oh, M.H., Ray, W.K., Huber, S.C., Asara, J.M., Gage, D.A., and Clause, S.D. (2000). Recombinant brassinosteroid insensitive 1 receptor-like kinase autophosphorylates on serine and threonine residues and phosphorylates a conserved peptode motif in vitro. Plant Physiol. 124, 751-766 https://doi.org/10.1104/pp.124.2.751
  28. Pwason, T., and Nash, P. (2000). protein-protein interactions define specificity in signal transduction. Genes Dev. 14, 1027-1047
  29. Shah, K., Vervoort, J., and de Vries, S.C. (2001). Role of threonines in the Arabidopsis thaliana somatic embryogenesis receptor kinase1 activation loop in phosphorylation. J. Biol. Chem. 276, 41263-41269 https://doi.org/10.1074/jbc.M102381200
  30. Shiu, S.H., and Bleeker, A.B. (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA 98, 10763-10768 https://doi.org/10.1073/pnas.181141598
  31. TenDijke, P., and Hill, C.S. (2004). New insight into TGF-beta-Smad signaling. Trends Biochem. Sci. 29, 265-273 https://doi.org/10.1016/j.tibs.2004.03.008
  32. Ulrich, A., and Schlessinger, J. (1990). Signal transduction by receptors with tyrosine kinase activity. Cell 61, 203-212 https://doi.org/10.1016/0092-8674(90)90801-K
  33. Vert, G., Nemhauser, J.L., Geldner, N., Hong, F., and Chory, J. (2005). Molecular mechanisms of steroid hormone signaling in plants. Annu. Rev. Cell Dev. Biol. 21, 177-201 https://doi.org/10.1146/annurev.cellbio.21.090704.151241
  34. Wang, Z.Y., Seto, H., Fujioka, S., Yoshida, S., and Chory, J. (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410, 380-383 https://doi.org/10.1038/35066597
  35. Wang, Z.Y., Nakano, T., Gendron, J., He, J.X., Chen, M., Vafedos, D., Yang, Y., Fujioka, S., Yoshida, S, Asami, T., et al. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell 2, 505-515 https://doi.org/10.1016/S1534-5807(02)00153-3
  36. Wang, X., Goshe, M.B., Soderblom, E.J., Phinney, B.S., Kuchar, J.A., Li, J., Asami, T., Yoshida, S., Huber, S.C., and Clouse, S.D. (2005a). Identification and functional analysis of in vitro phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Plant Cell 17, 1685-1703 https://doi.org/10.1105/tpc.105.031393
  37. Wang, X., Li, X., Meisenhelder, J., Hunter, T., Yoshida, S., Asami, T., and Chory, J. (2005b). Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev. Cell 8, 855-865 https://doi.org/10.1016/j.devcel.2005.05.001
  38. Wang, X., and Chory, J. (2006). Brassinosteroids regualate dissociation of BKI1, a negative regulator of BRI1 signaling from a plasma membrane. Science 131, 1118-1122
  39. Yamamuro, C., Ihara, Y., Wu, X., Noguchi, T., Fujoka, S., Takatsuto, S., Ashikari, M., Kitano, H., and Matsuoka, M. (2002). Loss of Function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12, 1591-1606
  40. Yin, Y., Mora-Garcia, S., Li, J., Yoshida, S, Asami, T., and Chory, J. (2002). BES1 accumulates in the nucleus in response to brassinosteriods to regulate gene expression and promote stem elongation. Cell 109, 181-191 https://doi.org/10.1016/S0092-8674(02)00721-3
  41. Zurek, D.M., Rayle, D.L., McMorris, T.C., and Clause, S.D. (1994). Investigation of gene-expression, growth-kinetics, and wall extensibility during brassinosteroid-regulated stem elongation. Plant Physiol. 104, 505-513 https://doi.org/10.1104/pp.104.2.505

Cited by

  1. One for all: the receptor-associated kinase BAK1 vol.14, pp.10, 2009, https://doi.org/10.1016/j.tplants.2009.08.002
  2. A Transcriptional Feedback Loop Modulating Signaling Crosstalks between Auxin and Brassinosteroid in Arabidopsis vol.29, pp.5, 2009, https://doi.org/10.1007/s10059-010-0055-6
  3. Proteome-wide survey of phosphorylation patterns affected by nuclear DNA polymorphisms in Arabidopsis thaliana vol.11, pp.None, 2009, https://doi.org/10.1186/1471-2164-11-411
  4. Predominant Actions of Cytosolic BSU1 and Nuclear BIN2 Regulate Subcellular Localization of BES1 in Brassinosteroid Signaling vol.29, pp.3, 2009, https://doi.org/10.1007/s10059-010-0034-y
  5. Phosphorylation Dependent Nucleocytoplasmic Shuttling of BES1 Is a Key Regulatory Event in Brassinosteroid Signaling vol.29, pp.3, 2009, https://doi.org/10.1007/s10059-010-0035-x
  6. ASKθ, a group-III Arabidopsis GSK3, functions in the brassinosteroid signalling pathway vol.62, pp.2, 2010, https://doi.org/10.1111/j.1365-313x.2010.04145.x
  7. Brassinosteroid Signal Transduction from Receptor Kinases to Transcription Factors vol.61, pp.None, 2010, https://doi.org/10.1146/annurev.arplant.043008.092057
  8. NSP-interacting kinase, NIK: a transducer of plant defence signalling vol.61, pp.14, 2009, https://doi.org/10.1093/jxb/erq219
  9. Deubiquitinating enzymes AtUBP12 and AtUBP13 and their tobacco homologue NtUBP12 are negative regulators of plant immunity vol.191, pp.1, 2011, https://doi.org/10.1111/j.1469-8137.2011.03672.x
  10. The Receptor-Like Kinase SERK3/BAK1 Is Required for Basal Resistance against the Late Blight Pathogen Phytophthora infestans in Nicotiana benthamiana vol.6, pp.1, 2009, https://doi.org/10.1371/journal.pone.0016608
  11. Mutations in Two Putative Phosphorylation Motifs in the Tomato Pollen Receptor Kinase LePRK2 Show Antagonistic Effects on Pollen Tube Length vol.286, pp.6, 2009, https://doi.org/10.1074/jbc.m110.147512
  12. Structural insight into brassinosteroid perception by BRI1 vol.474, pp.7352, 2011, https://doi.org/10.1038/nature10178
  13. Brassinosteroids Antagonize Gibberellin- and Salicylate-Mediated Root Immunity in Rice vol.158, pp.4, 2009, https://doi.org/10.1104/pp.112.193672
  14. Genome-Wide Analysis of a TaLEA -Introduced Transgenic Populus simonii × Populus nigra Dwarf Mutant vol.13, pp.3, 2012, https://doi.org/10.3390/ijms13032744
  15. Update on Phosphorylation-Mediated Brassinosteroid Signaling Pathways vol.22, pp.3, 2012, https://doi.org/10.5352/jls.2012.22.3.428
  16. Assessing the diverse functions of BAK1 and its homologs in arabidopsis, beyond BR signaling and PTI responses vol.35, pp.1, 2013, https://doi.org/10.1007/s10059-013-2255-3
  17. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity vol.472, pp.3, 2009, https://doi.org/10.1042/bj20150147
  18. Delineating a New Class of Membrane-Bound Guanylate Cyclases vol.4, pp.1, 2009, https://doi.org/10.1007/s40362-015-0037-3
  19. Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants vol.7, pp.None, 2009, https://doi.org/10.3389/fmicb.2016.02139
  20. The Innate Immune Signaling System as a Regulator of Disease Resistance and Induced Systemic Resistance Activity Against Verticillium dahliae vol.29, pp.4, 2016, https://doi.org/10.1094/mpmi-11-15-0261-r
  21. Phosphocode-dependent functional dichotomy of a common co-receptor in plant signaling vol.561, pp.7722, 2009, https://doi.org/10.1038/s41586-018-0471-x
  22. Gatekeeper-Activation Loop Cross-Talk Determines Distinct Autoactivation States of Symbiosis Receptor Kinase vol.58, pp.19, 2019, https://doi.org/10.1021/acs.biochem.9b00071
  23. Virus perception at the cell surface: revisiting the roles of receptor‐like kinases as viral pattern recognition receptors vol.20, pp.9, 2009, https://doi.org/10.1111/mpp.12816
  24. Hydrogen peroxide sensor HPCA1 is an LRR receptor kinase in Arabidopsis vol.578, pp.7796, 2020, https://doi.org/10.1038/s41586-020-2032-3
  25. Activation loop phosphorylaton of a non-RD receptor kinase initiates plant innate immune signaling vol.118, pp.38, 2009, https://doi.org/10.1073/pnas.2108242118
  26. Small molecule inhibitors of mammalian GSK-3β promote in vitro plant cell reprogramming and somatic embryogenesis in crop and forest species vol.72, pp.22, 2009, https://doi.org/10.1093/jxb/erab365