DOI QR코드

DOI QR Code

Effects of Anti-Vascular Endothelial Growth Factor (VEGF) on Pancreatic Islets in Mouse Model of Type 2 Diabetes Mellitus

제2형 당뇨병 동물모델에서 항 혈관내피세포 성장인자(Anti-Vascular Endothelial Growth Factor (VEGF)) 투여 시 췌장에 대한 효과

Kim, Ji-Won;Ham, Dong-Sik;Park, Heon-Seok;Ahn, Yu-Bai;Song, Ki-Ho;Yoon, Kun-Ho;Yoo, Ki-Dong;Kim, Myung-Jun;Jeong, In-Kyung;Ko, Seung-Hyun
김지원;함동식;박헌석;안유배;송기호;윤건호;유기동;김명준;정인경;고승현

  • Published : 20090600

Abstract

Background: Vascular endothelial growth factor (VEGF) is associated with the development of diabetic complications. However, it is unknown whether systemic VEGF treatment has any effects on the pancreatic islets in an animal model of type 2 diabetes mellitus. Methods: Anti-VEGF peptide (synthetic ATWLPPR, VEGF receptor type 2 antagonist) was injected into db/db mice for 12 weeks. We analyzed pancreatic islet morphology and quantified beta-cell mass. Endothelial cell proliferation and the severity of islet fibrosis were also measured. VEGF expression in isolated islets was determined using Western blot analysis. Results: When anti-VEGF was administered, db/db mice exhibited more severe hyperglycemia and associated delayed weight gain than non-treated db/db mice. Pancreas weight and pancreatic beta-cell mass were also significantly decreased in the anti-VEGF-treated group. VEGF and VEGF receptor proteins (types 1 and 2) were expressed in the pancreatic islets, and their expression was significantly increased in the db/db group compared with the db/dm group. However, the elevated VEGF expression was significantly reduced by anti-VEGF treatment compared with the db/db group. The anti-VEGF-treated group had more prominent islet fibrosis and islet destruction than db/db mice. Intra-islet endothelial cell proliferation was also remarkably reduced by the anti-VEGF peptide. Conclusion: Inhibition of VEGF action by the VEGF receptor 2 antagonist not only suppressed the proliferation of intra-islet endothelial cells but also accelerated pancreatic islet destruction and aggravated hyperglycemia in a type 2 diabetes mouse model. Therefore, the potential effects of anti-VEGF treatment on pancreatic beta cell damage should be considered.

연구배경: 대표적인 당뇨병성 합병증인 당뇨병성 신증과 망막병증은 공통적으로 혈관내피세포성장인자(Vascular endothelial growth factor, VEGF)가 합병증의 발생에 중요한 역할을 하는 것이 알려져 있으나 항 VEGF 치료가 췌도나 베타세포에 직접적으로 어떠한 영향을 주는지는 거의 알려진 바가 없다. 이에 당뇨병성 합병증 치료를 목적으로 하는 항 VEGF 치료가 췌장과 당뇨병의 경과에 미치는 영향을 관찰하고, 당뇨병이 진행되면서 나타나는 췌도 및 베타 세포의 변화에 있어서 VEGF의 역할을 규명하고 치료에 응용하고자 하였다. 방법: 이에 당뇨병 동물모델인 db/db mouse에 12주간 VEGF 수용체 type 2 antagonist (ATWLPPR, 5 mg/kg)를 복강 내 투여하여 혈당의 변화와 함께 췌장의 면역염색을 통하여 베타세포 질량 및 췌도의 형태적인 변화를 관찰하고 VEGF 의 췌도 내 발현 및 혈관신생 정도를 평가하였다. 결과: 12주간 항 VEGF peptide를 투여한 결과, 복강 내 당부하검사 시 db/db mouse 에 비해 항 VEGF 투여군에서 현저한 고혈당을 보였으며 고혈당이 심해지면서 항 VEGF 투여군에서 체중의 증가가 적었다. 췌장의 무게(db/dm vs. db/db vs. anti-VEGF group, 0.321 ${\pm}$ 0.05 vs. 0.206 ${\pm}$ 0.13 vs. 0.158 ${\pm}$ 0.12 g) 및 베타세포 질량(db/dm vs. db/db vs. anti-VEGF group, 4.08 ${\pm}$ 0.1 vs. 3.77 ${\pm}$ 0.2 vs. 2.89 ${\pm}$ 0.2 mg, P < 0.05) 역시 db/db군에 비해 항 VEGF 군에서 더 감소되었다. 또한 정상 췌도에 비해 당뇨병이 발생한 군에서 췌도 내 VEGF 발현이 증가되었으나, 항 VEGF 투여시 췌도 내 VEGF 단백의 발현이 감소하였고 (db/dm vs. db/db vs. anti-VEGF group, 3.63 ${\pm}$ 2.86 vs. 6.60 ${\pm}$ 3.56 vs. 2.74 ${\pm}$ 1.55%, * P < 0.05) 췌도의 크기가 감소하였으며, 췌도 내 섬유화 진행이 더 심하게 관찰되었고(db/dm vs. db/db vs. anti-VEGF group, 3.37 ${\pm}$ 1.51 vs. 13.96 ${\pm}$ 3.20 vs. 16.99 ${\pm}$ 4.96%, * P < 0.05) 췌도 내 내피세포의 증식이 더 감소되어 있었다. 결론: 제2형 당뇨병 동물모델에서 혈관내피세포 성장인자(VEGF)는 정상 췌도보다 당뇨병이 발생한 췌도에서 발현이 증가되므로 당뇨병의 발병 기전과 관련이 있을 것이며, 베타세포의 증식 및 췌도 변형에 중요한 역할을 하므로 당뇨병의 치료에도 응용할 수 있을 것으로 생각되고, 당뇨병성 미세혈관 합병증의 치료나 예방을 목적으로 제2형 당뇨병모델에 항 VEGF를 투여할 경우 고혈당 상태를 더 악화시키고 베타세포 증식을 억제하며 췌도 파괴를 가속화 시키므로, 항 VEGF 치료 시 이에 대한 충분한 고려가 필요할 것이다.

Keywords

References

  1. Flyvbjerg A, Dagnaes-Hansen F, De Vriese AS, Schrijvers BF, Tilton RG, Rasch R: Amelioration of long-term renal changes in obese type 2 diabetic mice by a neutralizing vascular endothelial growth factor antibody. Diabetes 51:3090-4, 2002 https://doi.org/10.2337/diabetes.51.10.3090
  2. de Vriese AS, Tilton RG, Elger M, Stephan CC, Kriz W, Lameire NH: Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol 12:993-1000, 2001
  3. Simorre-Pinatel V, Guerrin M, Chollet P, Penary M, Clamens S, Malecaze F, Plouet J: Vasculotropin -VEGF stimulates retinal capillary endothelial cells through an autocrine pathway. Invest Ophthalmol Vis Sci 35:3393-400, 1994
  4. Vasir B, Jonas JC, Steil GM, Hollister-Lock J, Hasenkamp W, Sharma A, Bonner-Weir S, Weir GC: Gene expression of VEGF and its receptors Flk-1/KDR and Flt-1 in cultured and transplanted rat islets. Transplantation 71:924-35, 2001 https://doi.org/10.1097/00007890-200104150-00018
  5. Zhang N, Richter A, Suriawinata J, Harbaran S, Altomonte J, Cong L, Zhang H, Song K, Meseck M, Bromberg J, Dong H: Elevated vascular endothelial growth factor production in islets improves islet graft vascularization. Diabetes 53:963-70, 2004 https://doi.org/10.2337/diabetes.53.4.963
  6. Stagner J, Mokshagundam S, Wyler K, Samols E, Rilo H, Stagner M, Parthasarathy L, Parthasarathy R: Beta-cell sparing in transplanted islets by vascular endothelial growth factor. Transplant Proc 36:1178-80, 2004 https://doi.org/10.1016/j.transproceed.2004.04.036
  7. Byrne AM, Bouchier-Hayes DJ, Harmey JH: Angiogenic and cell survival functions of vascular endothelial growth factor (VEGF). J Cell Mol Med 9:777-94, 2005 https://doi.org/10.1111/j.1582-4934.2005.tb00379.x
  8. Konstantinova I, Lammert E: Microvascular development: learning from pancreatic islets. Bioessays 26:1069-75, 2004 https://doi.org/10.1002/bies.20105
  9. Kamba T, Tam BY, Hashizume H, Haskell A, Sennino B, Mancuso MR, Norberg SM, O'Brien SM, Davis RB, Gowen LC, Anderson KD, Thurston G, Joho S, Springer ML, Kuo CJ, McDonald DM: VEGF -dependent plasticity of fenestrated capillaries in the normal adult microvasculature. Am J Physiol Heart Circ Physiol 290:H560-76, 2006 https://doi.org/10.1152/ajpheart.00133.2005
  10. Tammela T, Enholm B, Alitalo K, Paavonen K: The biology of vascular endothelial growth factors. Cardiovasc Res 65:550-63, 2005 https://doi.org/10.1016/j.cardiores.2004.12.002
  11. Lammert E, Gu G, McLaughlin M, Brown D, Brekken R, Murtaugh LC, Gerber HP, Ferrara N, Melton DA: Role of VEGF-A in vascularization of pancreatic islets. Curr Biol 13:1070-4, 2000 https://doi.org/10.1016/S0960-9822(03)00378-6
  12. Nikolova G, Jabs N, Konstantinova I, Domogatskaya A, Tryggvason K, Sorokin L, F$\ddot{a}$ssler R, Gu G, Gerber HP, Ferrara N, Melton DA, Lammert E: The vascular basement membrane: a niche for insulin gene expression and Beta cell proliferation. Dev Cell 10:397-405, 2006 https://doi.org/10.1016/j.devcel.2006.01.015
  13. Christofori G, Naik P, Hanahan D: Vascular endothelial growth factor and its receptors, flt-1 and flk-1, are expressed in normal pancreatic islets and throughout islet cell tumorigenesis. Mol Endocrinol 9:1760-70, 1995 https://doi.org/10.1210/me.9.12.1760
  14. Binetruy-Tournaire R, Demangel C, Malavaud B, Vassy R, Rouyre S, Kraemer M, Plouët J, Derbin C, Perret G, Mazie JC: Identification of a peptide blocking vascular endothelial growth Factor (VEGF) -mediated angiogenesis. EMBO J 19:1525-33, 2000 https://doi.org/10.1093/emboj/19.7.1525
  15. Zilberberg L, Shinkaruk S, Lequin O, Rousseau B, Hagedorn M, Costa F, Caronzolo D, Balke M, Canron X, Convert O, Laïn G, Gionnet K, Goncalvès M, Bayle M, Bello L, Chassaing G, Deleris G, Bikfalvi A: Structure and inhibitory effects on angiogenesis and tumor development of a new vascular endothelial growth inhibitor. J Biol Chem 278:35564-73, 2003 https://doi.org/10.1074/jbc.M304435200
  16. Weibel ER: Stereologic methods. In practical Methods for Biologic Morphometry. Vol. 1, London, Academic Press 101-61, 1978
  17. Mattsson G: The endothelial cells in islets of langerhans. Ups J Med Sci 110:1-15, 2005 https://doi.org/10.3109/2000-1967-081
  18. Lacy PE, Kostianovsky M: Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes 16:35–39, 1967
  19. Gotoh M, Maki T, Satomi S, Porter J, Bonner-Weir S, O'Hara CJ, Monaco AP: Reproducible high yield of rat islets by stationary in vitro digestion following pancreatic ductal or portal venous collagenase injection. Transplantation 43:725-30, 1987 https://doi.org/10.1097/00007890-198705000-00024
  20. Iwashita N, Uchida T, Choi JB, Azuma K, Ogihara T, Ferrara N, Gerber H, Kawamori R, Inoue M, Watada H: Impaired insulin secretion in vivo but enhanced insulin secretion from isolated islets in pancreatic beta cell-specific vascular endothelial growth factor-A knock-out mice. Diabetologia 50:380-9, 2007 https://doi.org/10.1007/s00125-006-0512-0
  21. Xie K, Wei D, Shi Q, Huang S: Constitutive and inducible expression and regulation of vascular endothelial growth factor. Cytokine Growth Factor Rev 15:297-324, 2004 https://doi.org/10.1016/j.cytogfr.2004.04.003
  22. Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L: VEGF-receptor signal transduction. Trends Biochem Sci 28:488-94, 2003 https://doi.org/10.1016/S0968-0004(03)00193-2
  23. Ferrara N, Davis-Smyth T: The biology of vascular endothelial growth factor. Endocr Rev 18:4-25, 1997 https://doi.org/10.1210/er.18.1.4
  24. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z: Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9-22, 1999
  25. Li X, Zhang L, Meshinchi S, Dias-Leme C, Raffin D, Johnson JD, Treutelaar MK, Burant CF: Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes 55:2965-73, 2006 https://doi.org/10.2337/db06-0733
  26. Johansson M, Mattsson G, Andersson A, Jansson L, Carlsson PO: Islet endothelial cells and pancreatic beta-cell proliferation: studies in vitro and during pregnancy in adult rats. Endocrinology 147:2315-24, 2006 https://doi.org/10.1210/en.2005-0997
  27. Kakizawa H, Itoh M, Itoh Y, Imamura S, Ishiwata Y, Matsumoto T, Yamamoto K, Kato T, Ono Y, Nagata M, Hayakawa N, Suzuki A, Goto Y, Oda N: The relationship between glycemic control and plasma vascular endothelial growth factor and endothelin-1 concentration in diabetic patients. Metabolism 53: 550-5, 2004 https://doi.org/10.1016/j.metabol.2003.12.002
  28. Linn T, Schneider K, Hammes HP, Preissner KT, Brandhorst H, Morgenstern E, Kiefer F, Bretzel RG: Angiogenic capacity of endothelial cells in islets of Langerhans. FASEB J 17:881-3, 2003 https://doi.org/10.1096/fj.02-0615fje
  29. Hammes HP, Lin J, Bretzel RG, Brownlee M, Breier G: Upregulation of the vascular endothelial growth factor/vascular endothelial growth factor receptor system in experimental background diabetic retinopathy of the rat. Diabetes 47:401-6, 1998 https://doi.org/10.2337/diabetes.47.3.401
  30. Lu M, Kuroki M, Amano S, Tolentino M, Keough K, Kim I, Bucala R, Adamis AP: Advanced glycation end products increase retinal vascular endothelial growth factor expression. J Clin Invest 1:1219-24, 1998 https://doi.org/10.1172/JCI1277
  31. Kuroki M, Voest EE, Amano S, Beerepoot LV, Takashima S, Tolentino M, Kim RY, Rohan RM, Colby KA, Yeo KT, Adamis AP: Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo. J Clin Invest 98:1667-75, 1996 https://doi.org/10.1172/JCI118962
  32. Ishii H, Jirousek MR, Koya D, Takagi C, Xia P, Clermont A, Bursell SE, Kern TS, Ballas LM, Heath WF, Stramm LE, Feener EP, King GL: Amelioration of vascular dysfunctions in diabetic rats by an oral PKC-b inhibitor. Science 272:728-31, 1996 https://doi.org/10.1126/science.272.5262.728
  33. Pieramici DJ, Rabena MD: Anti-VEGF therapy: comparison of current and future agents. Eye 22:1330-6, 2008 https://doi.org/10.1038/eye.2008.88
  34. Nagpal M, Nagpal K, Nagpal PN: A comparative debate on the various anti-vascular endothelial growth factor drugs: pegaptanib sodium (Macugen), ranibizumab (Lucentis) and bevacizumab (Avastin). Indian J Ophthalmol. 55:437-9, 2007 https://doi.org/10.4103/0301-4738.36478