DOI QR코드

DOI QR Code

Enhanced efficiency of dye-sensitized solar cells by UV–$O_3$ treatment of $TiO_2$ layer

Lee, Byoung-Kuk;Kim, Jang-Joo

  • Published : 20090300

Abstract

Solar conversion efficiency of dye-sensitized solar cells was improved by UV-$O_3$ treatment of $TiO_2$ before and/or after sintering. The enhancement was resulted from the removal of the residual organics originated from the $TiO_2$ precursor pastes, increased adsorption of dyes to the $TiO_2$, surface, and longer diffusion length and shorter electron transit time of electrons through the $TiO_2$ mesoscopic structure. The power conversion efficiency of the cells reaches to 7.2% with the open circuit voltage of 0.71 V, the short circuit current density of 15.2 mA/$cm^2$ and the fill factor of 0.67 under illumination with AM 1.5 (100 mW/$cm^2$) simulated sunlight.

Keywords

References

  1. B. O'Regan, M. Gratzel, Nature 353 (1991) 737 https://doi.org/10.1038/353737a0
  2. N.G. Park, J. van de Lagemaat, A.J. Frank, J. Phys. Chem. B 104 (2000) 8989 https://doi.org/10.1021/jp994365l
  3. M.Y. Song, D.K. Kim, K.J. Ihn, S.M. Jo, D.Y. Kim, Nanotechnology 15 (2004) 1861 https://doi.org/10.1088/0957-4484/15/12/030
  4. S. Anadan, Curr. Appl. Phys. 8 (2008) 99 https://doi.org/10.1016/j.cap.2007.05.006
  5. J.Y. Kim, I.J. Chung, J.K. Kim, J.-W. Yu, Curr. Appl. Phys. 6 (2006) 969 https://doi.org/10.1016/j.cap.2005.05.003
  6. C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, J. Am. Ceram. Soc. 80 (1997) 3157 https://doi.org/10.1111/j.1151-2916.1997.tb03245.x
  7. S. Sodergren, A. Hagfeldt, J. Olsson, S.E. Lindquist, J. Phys. Chem. 98 (1994) 5552 https://doi.org/10.1021/j100072a023
  8. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, M. Gratzel, J. Am. Chem. Soc. 115 (1993) 6382 https://doi.org/10.1021/ja00067a063
  9. A. Hagfeldt, U. Bjo¨rkste´n, M. Gra¨tzel, J. Phys. Chem. 100 (1996) 8045 https://doi.org/10.1021/jp9518567
  10. S. Ferrere, B.A. Gregg, J. Phys. Chem. B 105 (2001) 7602 https://doi.org/10.1021/jp011612o
  11. A. Zaban, A. Meier, B.A. Gregg, J. Phys. Chem. B 101 (1997) 7985 https://doi.org/10.1021/jp971857u
  12. A. Gregg, S.-G. Chen, S. Ferrere, J. Phys. Chem. B 107 (2003) 3019 https://doi.org/10.1021/jp022000m
  13. D. Zhang, T. Yoshida, T. Oekermann, K. Furuta, H. Minoura, Adv. Funct. Mater. 16 (2006) 1228 https://doi.org/10.1002/adfm.200500700
  14. D. Zhang, S. Ito, Y. Wada, T. Kitamura, S. Yanagida, Chem. Lett. 1042 (2001)
  15. L. Dloczik, O. Ileperuma, I. Lauermann, L.M. Peter, E.A. Ponomarev, G. Redmond, N.J. Shaw, I. Uhlendorf, J. Phys. Chem. B 101 (1997) 10281 https://doi.org/10.1021/jp972466i
  16. G. Schlichthorl, S.Y. Huang, J. Sprague, A.J. Frank, J. Phys. Chem. B 101 (1997) 8141 https://doi.org/10.1021/jp9714126
  17. C.D. Wagner, A.V. Naumkin, A. Kraut-Vass, J.W. Allison, C.J. Powell, J.R. Rumble Jr., NIST standard reference database 20, Version 3.4 (Web version), (accessed May 2007)
  18. H. Onishi, C. Egawa, T. Aruga, Y. Iwasawa, Surf. Sci. 191 (1987) 479

Cited by

  1. Electric Field Effects on Charge Transport in Polymer/TiO2 Photovoltaic Cells Investigated by Intensity Modulated Photocurrent Spectroscopy vol.113, pp.28, 2009, https://doi.org/10.1021/jp9032645
  2. Photovoltaics literature survey (No. 68) vol.17, pp.2, 2009, https://doi.org/10.1002/pip.882
  3. 분산특성이 향상된 고효율 염료감응형 태양전지 vol.22, pp.6, 2009, https://doi.org/10.4313/jkem.2009.22.6.501
  4. Effect of interface chemical properties on nonvolatile memory characteristics for small-molecule memory cells embedded with Ni nano-crystals surrounded by NiO vol.10, pp.1, 2010, https://doi.org/10.1016/j.cap.2009.12.008
  5. Dynamic Characterization of Hybrid Solar Cells Based on Polymer and Aligned ZnO Nanorods by Intensity Modulated Photocurrent Spectroscopy vol.114, pp.47, 2009, https://doi.org/10.1021/jp108132v
  6. Polyvinyl pyrrolidone aided preparation of TiO2 films used in flexible dye-sensitized solar cells vol.56, pp.21, 2009, https://doi.org/10.1016/j.electacta.2011.06.057
  7. Plasma Surface Treatments of TiO2 Photoelectrodes for Use in Dye-Sensitized Solar Cells vol.158, pp.4, 2011, https://doi.org/10.1149/1.3547725
  8. Solution processed transition metal sulfides: application as counter electrodes in dye sensitized solar cells (DSCs) vol.13, pp.43, 2011, https://doi.org/10.1039/c1cp22817j
  9. Evaluation of external quantum efficiency of a 12.35% tandem solar cell comprising dye-sensitized and CIGS solar cells vol.95, pp.12, 2009, https://doi.org/10.1016/j.solmat.2011.07.038
  10. Zinc nitrate 용액을 이용한 염료감응형 태양전지 반사 방지막에 관한 연구 vol.61, pp.5, 2012, https://doi.org/10.5370/kiee.2012.61.5.705
  11. 표면형상 변화에 따른 염료감응 태양전지의 전기화학적 특성 vol.25, pp.2, 2009, https://doi.org/10.4313/jkem.2012.25.2.153
  12. Efficiency Enhancement of Dye-Sensitized Solar Cells by the Addition of an Oxidizing Agent to the TiO2Paste vol.6, pp.11, 2009, https://doi.org/10.1002/cssc.201300280
  13. Fabrication of panchromatic dye-sensitized solar cells using pre-dye coated TiO2 nanoparticles by a simple dip coating technique vol.3, pp.14, 2009, https://doi.org/10.1039/c3ra40339d
  14. Dye-sensitized solar cells based on electrospun poly(vinylidenefluoride-co-hexafluoropropylene) nanofibers vol.70, pp.2, 2009, https://doi.org/10.1007/s00289-012-0826-7
  15. Performance Improvement in Polymer/ZnO Nanoarray Hybrid Solar Cells by Formation of ZnO/CdS-Core/Shell Heterostructures vol.117, pp.11, 2009, https://doi.org/10.1021/jp312728t
  16. Synthesis and Characterization of WO3Doped TiO2Particle/Nanowire Layer in Dye-Sensitized Solar Cells vol.598, pp.1, 2009, https://doi.org/10.1080/15421406.2014.933295
  17. The effect of dye-sensitized solar cell based on the composite layer by anodic TiO 2 nanotubes vol.9, pp.1, 2009, https://doi.org/10.1186/1556-276x-9-671
  18. Effect of dye-sensitized solar cells based on the anodizing TiO2nanotube array/nanoparticle double-layer electrode vol.53, pp.11, 2009, https://doi.org/10.7567/jjap.53.11rb02
  19. Characteristics of Dye-Sensitized Solar Cells Using TiO2Nanotube Arrays with Large Surface Area by Spin-Coating Nanoparticle vol.620, pp.1, 2009, https://doi.org/10.1080/15421406.2015.1094882
  20. Tuning the Interfacial Area and Porosity of TiO2 Film for Enhanced Light Harvesting in DSSC vol.162, pp.1, 2015, https://doi.org/10.1149/2.0061501jes
  21. Achieving Enhanced Dye-Sensitized Solar Cell Performance by TiCl4/Al2O3Doped TiO2Nanotube Array Photoelectrodes vol.2015, pp.None, 2015, https://doi.org/10.1155/2015/545818
  22. Synergistic effect of TiCl4-ZnO treated TiO2nanotubes in dye-sensitized solar cell vol.54, pp.6, 2009, https://doi.org/10.7567/jjap.54.06fk02
  23. Flexible glass substrate based dye sensitized solar cells vol.132, pp.None, 2009, https://doi.org/10.1016/j.solmat.2014.09.001
  24. A strategy to enhance the efficiency of dye-sensitized solar cells by the highly efficient TiO2/ZnS photoanode vol.44, pp.5, 2015, https://doi.org/10.1039/c4dt03102d
  25. Laser Processing in the Manufacture of Dye‐Sensitized and Perovskite Solar Cell Technologies vol.3, pp.1, 2016, https://doi.org/10.1002/celc.201500389
  26. Effect of The Addition of PEG and PVA Polymer for Gel Electrolytes in Dye-Sensitized Solar Cell (DSSC) with Chlorophyll as Dye Sensitizer vol.214, pp.None, 2009, https://doi.org/10.1088/1757-899x/214/1/012011
  27. Characterization of UV Detectors Based on Dye Sensitized Cell vol.10, pp.29, 2009, https://doi.org/10.17485/ijst/2017/v10i29/95626
  28. Ultrafast Flame Annealing of TiO2 Paste for Fabricating Dye‐Sensitized and Perovskite Solar Cells with Enhanced Efficiency vol.13, pp.42, 2017, https://doi.org/10.1002/smll.201702260
  29. Tuning Anatase Surface Reactivity toward Carboxylic Acid Anchor Groups vol.33, pp.49, 2009, https://doi.org/10.1021/acs.langmuir.7b03044
  30. Metal–Phosphate Bilayers for Anatase Surface Modification vol.10, pp.7, 2009, https://doi.org/10.1021/acsami.7b16069
  31. Enhanced performance of a dye sensitized solar cell using metallic and bi-metallic nanoparticles vol.498, pp.None, 2009, https://doi.org/10.1088/1757-899x/498/1/012021
  32. Interfacial Properties of Doped Semiconductor Materials Can Alter the Behavior of Pseudomonas aeruginosa Films vol.1, pp.8, 2009, https://doi.org/10.1021/acsaelm.9b00347
  33. High-performance perovskite photodetectors based on CH3NH3PbBr3 quantum dot/TiO2 heterojunction vol.32, pp.8, 2009, https://doi.org/10.1088/1361-6528/abc8b2
  34. Plasmonic Dye‐Sensitized Solar Cells: Fundamentals, Recent Developments, and Future Perspectives vol.6, pp.34, 2009, https://doi.org/10.1002/slct.202102177