DOI QR코드

DOI QR Code

Preparations of $TiO_{2}$ pastes and its application to light-scattering layer for dye-sensitized solar cells

Lee, Jin-Kook;Jeong, Bo-Hwa;Jang, Sung-il;Kim, Young-Guen;Jang, Yong-Wook;Lee, Su-Bin;Kim, Mi-Ra

  • Published : 20090000

Abstract

Three different structures of $TiO_{2}$ electrodes of the dye-sensitized solar cell (DSSC) devices were fabricated with layers of nanoparticles and light-scattering particles, and their photovoltaic performances were investigated when the polymer electrolytes were used. Especially, 20-nm- and 123-nm-$TiO_{2}$ pastes were prepared by using sol–el method, to use for light-scattering layer from the incident light. The best efficiency of 6.03% under AM 1.5 was attained with a multi-layer structure using 123-nm-$TiO_{2}$ layer for the light-scattering layer and 9-nm-$TiO_{2}$ layer for the dense layer.

Keywords

References

  1. B.O. Regan, M. Gr$\ddot{a}$tzel, Nature 353 (1991) 737 https://doi.org/10.1038/353737a0
  2. M.K. Nazzeeruddin, A. Kay, I. Rodicio, R. Humphry Baker, E. Miller, P. Liska, N. Vlachopoulus, M. Gr$\ddot{a}$tzel, J. Am. Chem. Soc. 115 (1993) 6382 https://doi.org/10.1021/ja00067a063
  3. A. Jagfeldt, M. Gr$\ddot{a}$tzel, Chem. Rev. 95 (1995) 49 https://doi.org/10.1021/cr00033a003
  4. H.K. Song, Y.H. Park, C.H. Han, J.G. Jee, J. Ind. Eng. Chem. 15 (2009) 62 https://doi.org/10.1016/j.jiec.2008.08.011
  5. F.C. Krebs, M. Biancardo, Sol. Energy Mater. Sol. Cells 90 (2006) 142 https://doi.org/10.1016/j.solmat.2005.02.006
  6. A. Usami, Chem. Phys. Lett. 277 (1997) 105 https://doi.org/10.1016/S0009-2614(97)00878-6
  7. J. Ferber, J. Luther, Sol. Energy Mater. Sol. Cells 54 (1998) 265 https://doi.org/10.1016/S0927-0248(98)00078-6
  8. G. Rothenberger, P. Comte, M. Gr$\ddot{a}$tzel, Sol. Energy Mater. Sol. Cells 58 (1999) 321 https://doi.org/10.1016/S0927-0248(99)00015-X
  9. A. Usami, Sol. Energy Mater. Sol. Cells 59 (1999) 163 https://doi.org/10.1016/S0927-0248(99)00068-9
  10. A. Usami, Sol. Energy Mater. Sol. Cells 64 (2000) 73 https://doi.org/10.1016/S0927-0248(00)00049-0
  11. S. Hore, C. Vetter, R. Kern, H. Smit, A. Hinsch, Sol. Energy Mater. Sol. Cells 90 (2006) 1176 https://doi.org/10.1016/j.solmat.2005.07.002
  12. K. Kalyanasundaram, M. Gr$\ddot{a}$tzel, Coord. Chem. Rev. 177 (1998) 347 https://doi.org/10.1016/S0010-8545(98)00189-1
  13. C.J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gr$\ddot{a}$tzel, J. Am. Ceram. Soc. 80 (12) (1997) 3157 https://doi.org/10.1111/j.1151-2916.1997.tb03245.x
  14. N.G. Park, J. Van de Labemaat, A.J. Frank, J. Phys. Chem. B 104 (2000) 8989 https://doi.org/10.1021/jp994365l
  15. C.-Y. Huang, Y.-C. Hsu, J.-G. Chen, V. Suryanarayanan, K.-M. Lee, K.-C. Ho, Sol. Energy Mater. Sol. Cell 90 (15) (2006) 2391 https://doi.org/10.1016/j.solmat.2006.03.012
  16. S. Mahshid, M. Askari, M. Sasani Ghamsari, J. Mater. Process. Technol. 189 (2007) 296 https://doi.org/10.1016/j.jmatprotec.2007.01.040

Cited by

  1. Al@SiO2Core-Shell Microflakes as Metal-Based Light Scattering Layer in Dye-Sensitized Solar Cells vol.2011, pp.None, 2011, https://doi.org/10.1155/2011/371076
  2. 염료감응형 태양전지용 유리분말이 함유된 고효율 광전극 페이스트 개발 vol.24, pp.5, 2009, https://doi.org/10.4313/jkem.2011.24.5.427
  3. Synthesis of PS-g-TiO2Nanocomposites through a Simple Method of Surface Initiated Radical Polymerization vol.568, pp.1, 2009, https://doi.org/10.1080/15421406.2012.710392
  4. Mesoporous Titania FilmsPrepared by Flame Stabilizedon a Rotating Surface: Application in Dye Sensitized Solar Cells vol.116, pp.9, 2009, https://doi.org/10.1021/jp2095533
  5. Light Scattering Amplification on Dye Sensitized Solar Cells Assembled by Hollyhock-shaped CdS-TiO2 Composites vol.33, pp.9, 2009, https://doi.org/10.5012/bkcs.2012.33.9.3043
  6. Fabrication of Flexible Dye-Sensitized Solar Cells by Pressurization-Transfer Technique vol.311, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amm.311.446
  7. Green-Engineered All-Substrate Mesoporous TiO2Photoanodes with Superior Light-Harvesting Structure and Performance vol.7, pp.3, 2009, https://doi.org/10.1002/cssc.201301139
  8. A review on materials for light scattering in dye-sensitized solar cells vol.4, pp.34, 2009, https://doi.org/10.1039/c4ra01308e
  9. Fabrication of dye sensitized solar cells with different photoanode compositions using hydrothermally grown and P25 TiO2nanocrystals vol.69, pp.2, 2015, https://doi.org/10.1051/epjap/2015140375
  10. The Effect of Sintering and Soaking Temperature on the Dye-Sensitized Solar Cell Performance vol.827, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/msf.827.135
  11. Photovoltaic study of quantum dot-sensitized TiO2/CdS/ZnS solar cell with P3HT or P3OT added vol.46, pp.9, 2009, https://doi.org/10.1007/s10800-016-0972-y
  12. Fabrication of dye-sensitized solar cells with multilayer photoanodes of hydrothermally grown TiO2 nanocrystals and P25 TiO2 nanoparticles vol.39, pp.6, 2009, https://doi.org/10.1007/s12034-016-1289-5
  13. Efficiency enhancement of cubic perovskite BaSnO3 nanostructures based dye sensitized solar cells vol.18, pp.12, 2009, https://doi.org/10.1039/c5cp06754e
  14. Comparative study on effect of titania morphology for light harvesting and scattering of DSSCs: Mesoporous nanoparticles, microspheres, and dandelion‐like particles vol.35, pp.6, 2009, https://doi.org/10.1002/ep.12405
  15. Study on conventional carbon characteristics as counter electrode for dye sensitized solar cells vol.853, pp.None, 2009, https://doi.org/10.1088/1742-6596/853/1/012044
  16. Effect of The Addition of PEG and PVA Polymer for Gel Electrolytes in Dye-Sensitized Solar Cell (DSSC) with Chlorophyll as Dye Sensitizer vol.214, pp.None, 2009, https://doi.org/10.1088/1757-899x/214/1/012011
  17. Effect of Mixing Dyes and Solvent in Electrolyte Toward Characterization of Dye Sensitized Solar Cell Using Natural Dyes as The Sensitizer vol.214, pp.None, 2009, https://doi.org/10.1088/1757-899x/214/1/012022
  18. Fabrication and characterization of TiO2 & SnO2 nanoparticles as a photoanodes in dye sensitized solar cell vol.1153, pp.None, 2019, https://doi.org/10.1088/1742-6596/1153/1/012075
  19. Effect of Electrical Resistance of TiO2 Layer Characteristics of Dye Sensitized Solar Cell Using Chlorophyll as a Sensitizer vol.966, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/msf.966.422
  20. Inter-relation between size and arrangement of TiO2 nanoparticle layers on efficiency of dye-sensitized solar cells vol.16, pp.6, 2009, https://doi.org/10.1007/s13738-019-01596-4
  21. Enhancement of Dye Sensitized Solar Cell Efficiency Using Chlorophyll as Dye Sensitizer by Adding The SnO2 Material to TiO2 vol.1445, pp.None, 2009, https://doi.org/10.1088/1742-6596/1445/1/012024
  22. Rapid Room-Temperature Synthesis of Mesoporous TiO 2 Sub-Microspheres and Their Enhanced Light Harvesting in Dye-Sensitized Solar Cells vol.10, pp.3, 2009, https://doi.org/10.3390/nano10030413
  23. Anthocyanin Development from Fruit Waste for Dye Sensitized Solar Cell Applications vol.1951, pp.1, 2009, https://doi.org/10.1088/1742-6596/1951/1/012048