DOI QR코드

DOI QR Code

Effect of Post Thermal Annealing on Femtosecond Laser Crystallization of 500-nm-thick Amorphous Silicon Films

  • Lee, Geon-Joon (Quantum Photonic Science Research Center and Department of Physics, Hanyang University) ;
  • Lee, Young-Pak (Quantum Photonic Science Research Center and Department of Physics, Hanyang University) ;
  • Kim, Sung-Soo (Department of Physics, Sogang University) ;
  • Cheong, Hyeon-Sik (Department of Physics, Sogang University) ;
  • Yoon, Chong-Seung (Division of Advanced Materials Science, Hanyang University) ;
  • Son, Yong-Duck (Department of Information Display, Kyung Hee University) ;
  • Jang, Jin (Department of Information Display, Kyung Hee University)
  • Published : 20090700

Abstract

Femtosecond laser interference crystallization was studied in 500-nm-thick amorphous silicon (a-Si) films prepared on glass by using plasma-enhanced chemical-vapor deposition. The efficient crystallization of 500-nm-thick a-Si films was found to require post thermal annealing as well as laser annealing. Femtosecond laser interference technique was used to produce the seed pattern for the spatially-selected crystallization of a-Si. Post thermal annealing of the seed pattern was performed at 550 $^{\circ}C$ for 20 hours under a nitrogen atmosphere. By applying post thermal annealing to laser-crystallized silicon, the degree of crystallization was enhanced. The femtosecond laser-induced grating can be regarded as a pattern of alternating a-Si and ${\mu}c$-Si (microcrystalline silicon) bands with a period of about 2 ${\mu}m$. Probe-beam diffraction, micro-Raman spectroscopy, and transmission electron microscopy were used to investigate the diffraction behavior and to confirm the spatially-selected crystallization of a-Si.

Keywords

Acknowledgement

This work was supported by the Korea Science and Engineering Foundation (KOSEF) through the Quantum Photonic Science Research Center.

References

  1. P. L. Fork, C. H. Britocruz and P. C. Becker, Opt. Lett. 12, 483 (1987) https://doi.org/10.1364/OL.12.000483
  2. M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn and M. M. Murnane, Opt. Lett. 18, 977 (1993) https://doi.org/10.1364/OL.18.000977
  3. F. Krausz, T. Brabec and C. Spielmann, Opt. Lett. 16, 235 (1991) https://doi.org/10.1364/OL.16.000235
  4. X. Ai, R. Jin, C. Ge, J. Wang, Y. Zou, X. Zhoy and X. Xiao, J. Chem. Phys. 106, 3387 (1997) https://doi.org/10.1063/1.473087
  5. T. D. Krauss and F. W. Wise, Appl. Phys. Lett. 65, 1739 (1994) https://doi.org/10.1063/1.112901
  6. J. Ringling, O. Kittelmann, F. Noack, G. Korn and J. A. Squier, Opt. Lett. 65, 1739 (1994)
  7. J. J. Macklin, J. D. Kmetec and C. L. Gordon, Phys. Rev. Lett. 70, 766 (1993) https://doi.org/10.1103/PhysRevLett.70.766
  8. Y. Z. Ma, L. Valkunas, S. L. Dexheimer, S. M. Bachilo and G. R. Fleming, Phys. Rev. Lett. 94, 157402 (2005) https://doi.org/10.1103/PhysRevLett.94.157402
  9. G. J. Lee, Y. P. Lee, K. R. Kim, M. I. Jang, C. S. Yoon, J. Ahn, Y. D. Son and J. Jang, J. Korean Phys. Soc. 49, S716 (2006)
  10. P. J. Rizo and T. Kobayashi, Appl. Phys. Lett. 85, 28 (2004) https://doi.org/10.1063/1.1768303
  11. C. W. Carr, H. B. Radousky and S. G. Demos, Phys. Rev. Lett. 91, 127402 (2003) https://doi.org/10.1103/PhysRevLett.91.127402
  12. K. M. Davis, K. Miura, N. Sugimoto and K. Hirao, Opt. Lett. 21, 1729 (1996) https://doi.org/10.1364/OL.21.001729
  13. S. Kawata, H. B. Sun, T. Tanaka and K. Takada, Nature 412, 697 (2001) https://doi.org/10.1038/35089130
  14. Y. Kuroiwa, N. Takeshima, Y. Narita, S. Tanaka and K. Hirao, Opt. Express 12, 1908 (2004) https://doi.org/10.1364/OPEX.12.001908
  15. Q. Z. Zhao, J. R. Qio, X. W. Jiang, E. W. Dai, C. H. Zhou and C. S. Zhu, Opt. Express 13, 2089 (2005) https://doi.org/10.1364/OPEX.13.002089
  16. G. J. Lee, Y. P. Lee, S. G. Jung, B. Y. Jung, C. K. Hwangbo, S. Kim and I. Park, J. Korean Phys. Soc. 51, 431 (2007) https://doi.org/10.3938/jkps.51.431
  17. G. J. Lee, Y. P. Lee, B. Y. Jung, S. G. Jung, C. K. Hwangbo, J. H. Kim and C. S. Yoon, J. Korean Phys. Soc. 51, 1555 (2007) https://doi.org/10.3938/jkps.51.1555
  18. G. J. Lee, Y. P. Lee, S. G. Jung, C. K. Hwangbo, S. S. Kim, H. Cheong and C. S. Yoon, J. Korean Phys. Soc. 53, 1414 (2008) https://doi.org/10.3938/jkps.53.1414
  19. G. J. Lee, Y. P. Lee and C. S. Yoon, J. Korean Phys. Soc. 53, 3818 (2008) https://doi.org/10.3938/jkps.53.3818
  20. G. J. Lee, S. H. Song, Y. P. Lee, H. Cheong, C. S. Yoon, Y. D. Son and J. Jang, Appl. Phys. Lett. 89, 151907 (2006) https://doi.org/10.1063/1.2358922
  21. J. B. Kim, G. J. Lee, Y. P. Lee, J. Y. Rhee, K. W. Kim and C. S. Yoon, Appl. Phys. Lett. 89, 151111 (2006) https://doi.org/10.1063/1.2355455
  22. S. Katayama, N. Tsutsumi, T. Nakamura and K. Hirao, Appl. Phys. Lett. 81, 832 (2002) https://doi.org/10.1063/1.1497713
  23. J. Jia, M. Li and C. V. Thompson, Appl. Phys. Lett. 84, 3205 (2004) https://doi.org/10.1063/1.1719280
  24. K. Miura, J. Qiu, S. Fujiwara, S. Sakaguchi and K. Hirao, Appl. Phys. Lett. 80, 2263 (2002) https://doi.org/10.1063/1.1459769
  25. J. Qiu, X. Jiang, C. Zhu, H. Inouye, J. Si and K. Hirao, Opt. Lett. 29, 370 (2004) https://doi.org/10.1364/OL.29.000370
  26. T. Sameshima, Mater. Sci. Eng. B 45, 186 (1997) https://doi.org/10.1016/S0921-5107(96)01886-7
  27. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben and A. T¨unnermann, Appl. Phys. A 63, 109 (1996) https://doi.org/10.1007/BF01567637
  28. S. Y. Yoon, J. Y. Oh, C. O. Kim and J. Jang, J. Appl. Phys. 84, 6463 (1998) https://doi.org/10.1063/1.368887
  29. J. Jang, J. Y. Oh, S. K. Kim, K. J. Cho, S. Y. Yoon and C. O. Kim, Nature (London) 395, 481 (1998) https://doi.org/10.1038/26711
  30. Z. Iqbal and S. Veprek, J. Phys. C: Solid State Phys. 15, 377 (1982) https://doi.org/10.1088/0022-3719/15/2/019
  31. L. Houben, M. Luysberg, P. Hapke, R. Carius, F. Finger and H. Wagner, Philos. Mag. A 77, 1447 (1998) https://doi.org/10.1080/01418619808214262
  32. H. Y. Kim, J. B. Choi and J. Y. Lee, J. Vac. Sci. Tech. A 17, 5240 (1999)
  33. S. Y. Yoon, K. H. Kim, C. O. Kim, J. Y. Oh and J. Jang, J. Appl. Phys. 82, 5865 (1997) https://doi.org/10.1063/1.366455
  34. J. Jang, S. J. Park, K. H. Kim, B. R. Cho, W. K. Kwak and S. Y. Yoon, J. Appl. Phys. 88, 6463 (2000)
  35. J. Jang, Poly-Si TFTs by Non-Laser Crystallization Methods, edited by Y. Kuo, Thin Film Transistors: Materials and Processes (World Scientific, Singapore, 1992), Vol. 2, p. 220