DOI QR코드

DOI QR Code

The function of $p27^{KIP1}$ during tumor development

Lee, Jin-Hwa;Kim, Sung-Soo

  • Published : 20091100

Abstract

Timely cell cycle regulation is conducted by sequential activation of a family of serine-threonine kinases called cycle dependent kinases (CDKs). Tight CDK regulation involves cyclin dependent kinase inhibitors (CKIs) which ensure the correct timing of CDK activation in different phases of the cell cycle. One CKI of importance is $p27^{KIP1}$. The regulation and cellular localization of $p27^{KIP1}$ can result in biologically contradicting roles when found in the nucleus or cytoplasm of both normal and tumor cells. The $p27^{KIP1}$ protein is mainly regulated by proteasomal degradation and its downregulation is often correlated with poor prognosis in several types of human cancers. The protein can also be functionally inactivated by cytoplasmic localization or by phosphorylation. The $p27^{KIP1}$ protein is an unconventional tumor suppressor because mutation of its gene is extremely rare in tumors, implying the normal function of the protein is deranged during tumor development. While the tumor suppressor function is mediated by $p27^{KIP1}$'s inhibitory interactions with the cyclin/CDK complexes, its oncogenic function is cyclin/CDK independent, and in many cases correlates with cytoplasmic localization. Here we review the basic features and novel aspects of the $p27^{KIP1}$ protein, which displays genetically separable tumor suppressing and oncogenic functions.

Keywords

References

  1. Bagui TK, Cui D, Roy S, Mohapatra S, Shor AC, Ma L, Pledger WJ. Inhibition of p27Kip1 gene transcription by mitogens. Cell Cycle 2009;8:115-24 https://doi.org/10.4161/cc.8.1.7527
  2. Batsi C, Markopoulou S, Kontargiris E, Charalambous C, Thomas C, Christoforidis S, Kanavaros P, Constantinou AI, Marcu KB, Kolettas E. Bcl-2 blocks 2-methoxyestradiol induced leukemia cell apoptosis by a p27(Kip1)-dependent G1/S cell cycle arrest in conjunction with NF-kappaB activation. Biochem Pharmacol 2009;78:33-44 https://doi.org/10.1016/j.bcp.2009.03.017
  3. Besson A, Gurian-West M, Schmidt A, Hall A, Roberts JM. p27KIP1 modulates cell migration through the regulation of RhoA activation. Genes Dev 2004;18:862-76 https://doi.org/10.1101/gad.1185504
  4. Besson A, Hwang HC, Cicero S, Donovan SL, Gurian-West M, Johnson D, Clurman BE, Dyer MA, Roberts JM. Discovery of an oncogenic activity in p27KIP1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev 2007;21:1731-46 https://doi.org/10.1101/gad.1556607
  5. Besson A, Dowdy SF, Roberts JM. CDK inhibitors: Cell cycle regulators and beyond. Dev Cell 2008;14:159-69 https://doi.org/10.1016/j.devcel.2008.01.013
  6. Blagosklonny MV. Are p27 and p21 cytoplasmic oncoproteins? Cell Cycle 2002;1:391-3 https://doi.org/10.4161/cc.1.6.262
  7. Boehm M, Yoshimoto T, Crook MF, Nallamshetty S, True A, Nabel GJ, Nabel EG. A growth factor-dependent nuclear kinase phosphorylates p27(Kip1) and regulates cell cycle progression. EMBO J 2002;21:3390-401 https://doi.org/10.1093/emboj/cdf343
  8. Carrano AC, Eytan E, Hershko A, Pagano M. Skp2 is required for ubiquitin-mediated degradation of the Cdk inhibitor p27. Nat Cell Biol 1999;1:193-7 https://doi.org/10.1038/12013
  9. Chien WM, Garrison K, Caufield E, Orthel J, Dill J, Fero ML. Differential gene expression of p27Kip1 and Rb knockout pituitary tumors associated with altered growth and angiogenesis. Cell Cycle. 2007;15:750-7
  10. Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 2008;8:253-67 https://doi.org/10.1038/nrc2347
  11. De Clercq A, Inze D. Cyclin-dependent kinase inhibitors in yeast, animals, and plants: A functional comparison. Crit Rev Biochem Mol Biol 2006;41:293-313 https://doi.org/10.1080/10409230600856685
  12. Deng X, Ewton DZ, Pawlikowski B, Maimone M, Friedman E. Mirk/dyrk1B is a Rho-induced kinase active in skeletal muscle differentiation. J Biol Chem 2003;278:41347-54 https://doi.org/10.1074/jbc.M306780200
  13. Deng X, Mercer SE, Shah S, Ewton DZ, Friedman E. The cyclin-dependent kinase inhibitor p27Kip1 is stabilized in G(0) by Mirk/dyrk1B kinase. J Biol Chem 2004;279:22498-504 https://doi.org/10.1074/jbc.M400479200
  14. Di Cristofano A, De Acetis M, Koff A, Cordon-Cardo C, Pandolfi PP. Pten and p27KIP1 cooperate in prostate cancer tumor suppression in the mouse. Nat Genet 2001;27: 222-4 https://doi.org/10.1038/84879
  15. Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip1(Kip1)-deficient mice. Cell 1996;85:733-44 https://doi.org/10.1016/S0092-8674(00)81239-8
  16. Gao H, Ouyang X, Banach-Petrosky W, Borowsky AD, Lin Y, Kim M, Lee H, Shih WJ, Cardiff RD, Shen MM, Abate-Shen C. A critical role for p27Kip1kip1 gene dosage in a mouse model of prostate carcinogenesis. Proc Natl Acad Sci USA 2004;101:17204-9 https://doi.org/10.1073/pnas.0407693101
  17. Glover CE, Gurley KE, Kim KH, Storer B, Fero ML, Kemp CJ. Endocrine dysfunction in p27Kip1 deficient mice and susceptibility to Wnt-1 driven breast cancer. Carcinogenesis 2009;30:1058-63 https://doi.org/10.1093/carcin/bgp089
  18. Grimmler M, Wang Y, Mund T, Cilensek Z, Keidel EM, Waddell MB, J?kel H, Kullmann M, Kriwacki RW, Hengst L. Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 2007;128:269-80 https://doi.org/10.1016/j.cell.2006.11.047
  19. Hengst L, Reed SI. Translational control of p27Kip accumulation during the cell cycle. Science. 1996;271:1861-4 https://doi.org/10.1126/science.271.5257.1861
  20. Hershko DD. Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer. Cancer 2008;112:1415-24 https://doi.org/10.1002/cncr.23317
  21. Hidaka T, Hama S, Shrestha P, Saito T, Kajiwara Y, Yamasaki F, Sugiyama K, Kurisu K. The combination of low cytoplasmic and high nuclear expression of p27 predicts a better prognosis in high-grade astrocytoma. Anticancer Res 2009;29:597-603
  22. Hong K, Choi Y, Lee J, Kim H, Kwon H, Seong Y, Kim HT, Park J, Bae C, Hong KM. Transient phosphorylation of tumor associated microtubule associated protein (TMAP)/cytoskeleton associated protein 2 (CKAP2) at Thr-596 during early phases of mitosis. Exp Mol Med 2008;40:377-86 https://doi.org/10.3858/emm.2008.40.4.377
  23. Hong YB, Kang HJ, Kim HJ, Rosen EM, Dakshanamurthy S, Rondanin R, Baruchello R, Grisolia G, Daniele S, Bae I. Inhibition of cell proliferation by a resveratrol analog in human pancreatic and breast cancer cells. Exp Mol Med 2009;41:151-60 https://doi.org/10.3858/emm.2009.41.3.018
  24. Jeon JY, An JH, Kim SU, Park HG, Lee MA. Migration of human neural stem cells toward an intracranial glioma. Exp Mol Med 2008;40:84-91 https://doi.org/10.3858/emm.2008.40.1.84
  25. Jin K, Ewton DZ, Park S, Hu J, Friedman E. Mirk regulates the exit of colon cancer cells from quiescence. J Biol Chem 2009;284:22916-25 https://doi.org/10.1074/jbc.M109.035519
  26. Jung JE, Kim HS, Lee CS, Shin YJ, Kim YN, Kang GH, Kim TY, Juhnn YS, Kim SJ, Park JW, Ye SK, Chung MH. STAT3 inhibits the degradation of HIF-1$\alpha$ by pVHL-mediated ubiquitination. Exp Mol Med 2008;40:479-85 https://doi.org/10.3858/emm.2008.40.5.479
  27. Kim CF, Jackson EL, Woolfenden AE, Lawrence S, Babar I, Vogel S, Crowley D, Bronson RT, Jacks T. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005;121:823-35 https://doi.org/10.1016/j.cell.2005.03.032
  28. Kim SM, Kim N, Lee S, Kim DK, Lee YM, Ahn SH, Song JH, Choi BK, Wu C, Jung KY. TGF-$\beta$1-induced PINCH-1-ILK- $\alpha$-parvin complex formation regulates mesangial cell proliferation and hypertrophy. Exp Mol Med 2007;39:514-23 https://doi.org/10.1038/emm.2007.57
  29. Kim EK, Yun SJ, Do KH, Kim MS, Cho M, Suh DS, Kim CD, Kim JH, Morris J. Birnbaum and Bae SS. Lysophosphatidic acid induces cell migration through the selective activation of Akt1. Exp Mol Med 2008;40:445-52 https://doi.org/10.3858/emm.2008.40.4.445
  30. Larrea MD, Liang J, Da Silva T, Hong F, Shao SH, Han K, Dumont D, Slingerland JM. Phosphorylation of p27Kip1 regulates assembly and activation of cyclin D1-Cdk4. Mol Cell Biol 2008;28:6462-72 https://doi.org/10.1128/MCB.02300-07
  31. Larrea MD, Hong F, Wander SA, da Silva TG, Helfman D, Lannigan D, Smith JA, Slingerland JM. RSK1 drives p27Kip1 phosphorylation at T198 to promote RhoA inhibition and increase cell motility. Proc Natl Acad Sci USA 2009;106:9268-73 https://doi.org/10.1073/pnas.0805057106
  32. Loda M, Cukor B, Tam SW, Lavin P, Fiorentino M, Draetta GF, Jessup JM, Pagano M. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 1997;3:231-4 https://doi.org/10.1038/nm0297-231
  33. Malumbres M, Barbacid M. Mammalian cyclin-dependent kinases. Trends Biochem Sci 2005;30:630-41 https://doi.org/10.1016/j.tibs.2005.09.005
  34. Mishra A, Godavarthi SK, Jana NR. UBE3A/E6-AP regulates cell proliferation by promoting proteasomal degradation of p27. Neurobiol Dis 2009; In press https://doi.org/10.1016/j.nbd.2009.06.010
  35. Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N. Pim kinases promote cell cycle progression by phosphorylating and down-regulating $p27^{KIP1}$ at the transcriptional and posttranscriptional levels. Cancer Res 2008;68:5076-85 https://doi.org/10.1158/0008-5472.CAN-08-0634
  36. Muraoka RS, Lenferink AE, Law B, Hamilton E, Brantley DM, Roebuck L, Arteaga CL. ErbB2/Neu-induced, cyclin D1-dependent transformation is accelerated in p27Kip1-haploinsufficient mammary epithelial cells but impaired in p27Kip1-null cells. Mol Cell Biol 2002;22:2204-19 https://doi.org/10.1128/MCB.22.7.2204-2219.2002
  37. Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama K. Mice lacking $p27^{KIP1}$ display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 1996;85:707-20 https://doi.org/10.1016/S0092-8674(00)81237-4
  38. Nguyen L, Besson A, Heng JI, Schuurmans C, Teboul L, Parras C, Philpott A, Roberts JM, Guillemot F. $p27^{KIP1}$ independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 2006;20:1511-24 https://doi.org/10.1101/gad.377106
  39. Norbury C, Nurse P. Animal cell cycles and their control. Annu Rev Biochem 1992;61:441-70 https://doi.org/10.1146/annurev.bi.61.070192.002301
  40. Ray A, James MK, Larochelle S, Fisher RP, Blain SW. $p27^{KIP1}$ inhibits cyclin D-cyclin-dependent kinase 4 by two independent modes. Mol Cell Biol 2009;29:986-99 https://doi.org/10.1128/MCB.00898-08
  41. Rodier G, Montagnoli A, Di Marcotullio L, Coulombe P, Draetta GF, Pagano M, Meloche S. p27 cytoplasmic localization is regulated by phosphorylation on Ser10 and is not a prerequisite for its proteolysis. EMBO J 2001;20:6672-82 https://doi.org/10.1093/emboj/20.23.6672
  42. Russo AA, Jeffrey PD, Patten AK, Massague J, Pavletich NP. Crystal structure of the p27kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 1996;382:325-31 https://doi.org/10.1038/382325a0
  43. Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE. Cyclin E-CDK2 is a regulator of $p27^{KIP1}$. Genes Dev 1997;11:1464-78 https://doi.org/10.1101/gad.11.11.1464
  44. Sherr CJ. Mammalian G1 cyclins. Cell 1993;48:981-3
  45. Sherr CJ, Roberts JM. CDK inhibitors: Positive and negative regulators of G1-phase progression. Genes Dev 1999;13:1501-12 https://doi.org/10.1101/gad.13.12.1501
  46. Shin I, Rotty J, Wu FY, Arteaga CL. Phosphorylation of p27kip1 at Thr-157 interferes with its association with importin alpha during G1 and prevents nuclear re-entry. J Biol Chem 2005;18:6055-63 https://doi.org/10.1074/jbc.M412367200
  47. Shin MH, Mavila N, Wang WH, Vega Alvarez S, Hall MC, Andrisani OM. Time-dependent activation of Phox2a by the cAMP pathway modulates onset and duration of $p27^{KIP1}$ transcription. Mol Cell Biol 2009; In press https://doi.org/10.1128/MCB.01928-08
  48. Sicinski P, Zacharek S, Kim C. Duality of $p27^{KIP1}$ function in tumorigenesis. Genes Dev 2007;21:1731-46 https://doi.org/10.1101/gad.1556607
  49. Slingerland J, Pagano M. Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol. 2000;183:10-7 https://doi.org/10.1002/(SICI)1097-4652(200004)183:1<10::AID-JCP2>3.0.CO;2-I
  50. Susaki E, Nakayama K, Yamasaki L, Nakayama KI. Common and specific roles of the related CDK inhibitors p27 and p57 revealed by a knock-in mouse model. Proc Natl Acad Sci USA 2009;31:5192-7 https://doi.org/10.1073/pnas.0811712106
  51. Tossidou I, Dangers M, Koch A, Brandt DT, Schiffer M, Kardinal C. Tyrosine phosphatase SHP-2 is a regulator of p27(Kip1) tyrosine phosphorylation. Cell Cycle 2008;7:3858-68 https://doi.org/10.4161/cc.7.24.7260
  52. Trabosh VA, Divito KA, D Aguda B, Simbulan-Rosenthal CM, Rosenthal DS. Sequestration of E12/E47 and suppression of p27KIP1 play a role in Id2-induced proliferation and tumorigenesis. Carcinogenesis 2009;30:1252-9 https://doi.org/10.1093/carcin/bgp115
  53. Tsihlias J, Kapusta L, Slingerland J. The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancers. Annu Rev Med 1999;50:401-23 https://doi.org/10.1146/annurev.med.50.1.401
  54. Vervoorts J, Luuscher B. Post-translational regulation of the tumor suppressor $p27^{KIP1}$. Cell Mol Life Sci 2008;65:3255-64 https://doi.org/10.1007/s00018-008-8296-7
  55. Yil TG, Baek JH, Kim HJ, Choi MH, Seo SB, Ryoo HM, Kim GS, Woo KM. Trichostatin A-mediated upregulation of p21WAF1 contributes to osteoclast apoptosis. Exp Mol Med 2007;39:213-21 https://doi.org/10.1038/emm.2007.24
  56. Zhang HY, Du ZX, Liu BQ, Gao YY, Meng X, Guan Y, Deng WW, Wang HQ. Tunicamycin enhances TRAIL-induced apoptosis by inhibition of cyclin D1 and the subsequent downregulation of surviving. Exp Mol Med 2009;41:362-9 https://doi.org/10.3858/emm.2009.41.5.041
  57. Zhou W, Yang Q, Low CB, Karthik BC, Wang Y, Ryo A, Yao Q, Yang D, Liou YC. Pin1 catalyzes conformational changes of Thr187 in p27Kip1 and mediates its stability through a poly-ubiquitination process. J Biol Chem 2009; In press https://doi.org/10.1074/jbc.M109.022814

Cited by

  1. TG101209, a novel JAK2 inhibitor, has significant in vitro activity in multiple myeloma and displays preferential cytotoxicity for CD45+ myeloma cells vol.85, pp.9, 2009, https://doi.org/10.1002/ajh.21785
  2. Cyclin D2 is overexpressed in proliferation centers of chronic lymphocytic leukemia/small lymphocytic lymphoma vol.102, pp.11, 2009, https://doi.org/10.1111/j.1349-7006.2011.02046.x
  3. Mouse models for inherited endocrine and metabolic disorders. vol.211, pp.3, 2009, https://doi.org/10.1530/joe-11-0193
  4. Genetic susceptibility in pituitary adenomas: from pathogenesis to clinical implications vol.6, pp.2, 2009, https://doi.org/10.1586/eem.10.87
  5. Clinical relevance of SKP2 alterations in metastatic melanoma vol.24, pp.1, 2009, https://doi.org/10.1111/j.1755-148x.2010.00784.x
  6. Genetics/epigenetics of oral premalignancy: current status and future research* vol.17, pp.suppl1, 2009, https://doi.org/10.1111/j.1601-0825.2011.01789.x
  7. 2,3,4′,5‐Tetrahydroxystilbene‐2‐O‐β‐d‐glucoside inhibits platelet‐derived growth factor‐induced proliferation of vascular smoo vol.38, pp.5, 2009, https://doi.org/10.1111/j.1440-1681.2011.05502.x
  8. Consequences of interrupted Rheb-to-AMPK feedback signaling in tuberous sclerosis complex and cancer vol.2, pp.4, 2011, https://doi.org/10.4161/sgtp.2.4.16703
  9. Akt, FoxO and regulation of apoptosis vol.1813, pp.11, 2009, https://doi.org/10.1016/j.bbamcr.2011.03.010
  10. Artemis interacts with the Cul4A-DDB1DDB2ubiquitin E3 ligase and regulates degradation of the CDK inhibitor p27 vol.10, pp.23, 2009, https://doi.org/10.4161/cc.10.23.18227
  11. Genetic variants of p27 and p21 as predictors for risk of second primary malignancy in patients with index squamous cell carcinoma of head and neck vol.11, pp.None, 2009, https://doi.org/10.1186/1476-4598-11-17
  12. Novel dihydrobenzofuro[4,5-b][1,8]naphthyridin-6-one derivative, MHY-449, induces apoptosis and cell cycle arrest in HCT116 human colon cancer cells vol.41, pp.6, 2012, https://doi.org/10.3892/ijo.2012.1659
  13. DHHC-7 and -21 are palmitoylacyltransferases for sex steroid receptors vol.23, pp.1, 2009, https://doi.org/10.1091/mbc.e11-07-0638
  14. Synemin promotes AKT-dependent glioblastoma cell proliferation by antagonizing PP2A vol.23, pp.7, 2009, https://doi.org/10.1091/mbc.e11-08-0685
  15. Overexpression of TRIM24 Correlates with Tumor Progression in Non-Small Cell Lung Cancer vol.7, pp.5, 2009, https://doi.org/10.1371/journal.pone.0037657
  16. Novel molecular, cytotoxical, and immunological study on promising and selective anticancer activity of Mung bean sprouts vol.12, pp.None, 2009, https://doi.org/10.1186/1472-6882-12-208
  17. The emerging role of the molecular marker p27 in the differential diagnosis of adrenocortical tumors vol.2, pp.3, 2009, https://doi.org/10.1530/ec-13-0025
  18. DFMO/eflornithine inhibits migration and invasion downstream of MYCN and involves p27 Kip1 activity in neuroblastoma vol.42, pp.4, 2013, https://doi.org/10.3892/ijo.2013.1835
  19. Olean-12-Eno[2,3-c] [1,2,5]Oxadiazol-28-Oic Acid (OEOA) Induces G 1 Cell Cycle Arrest and Differentiation in Human Leukemia Cell Lines vol.8, pp.5, 2009, https://doi.org/10.1371/journal.pone.0063580
  20. Epstein-Barr virus-encoded small non-coding RNAs induce cancer cell chemoresistance and migration vol.443, pp.2, 2009, https://doi.org/10.1016/j.virol.2013.05.020
  21. Comprehensive identification of mutational cancer driver genes across 12 tumor types vol.3, pp.None, 2009, https://doi.org/10.1038/srep02650
  22. Glutathione peroxidase 7 has potential tumour suppressor functions that are silenced by location-specific methylation in oesophageal adenocarcinoma vol.63, pp.4, 2009, https://doi.org/10.1136/gutjnl-2013-304612
  23. Promoter methylation-associated silencing of p27kip1 gene with metastasis in esophageal squamous cell carcinoma vol.9, pp.3, 2009, https://doi.org/10.3892/mmr.2014.1887
  24. TRIM3, a tumor suppressor linked to regulation of p21 Waf1/Cip1 vol.33, pp.3, 2009, https://doi.org/10.1038/onc.2012.596
  25. Differential role of the estrogen receptors ESR1 and ESR2 on the regulation of proteins involved with proliferation and differentiation of Sertoli cells from 15-day-old rats vol.382, pp.1, 2014, https://doi.org/10.1016/j.mce.2013.09.015
  26. Effects of Thapsigargin on the Proliferation and Survival of Human Rheumatoid Arthritis Synovial Cells vol.2014, pp.None, 2009, https://doi.org/10.1155/2014/605416
  27. The Prognostic Value of Altered eIF3a and Its Association with p27 in Non-Small Cell Lung Cancers vol.9, pp.4, 2014, https://doi.org/10.1371/journal.pone.0096008
  28. Whole-exome sequencing identifies rare pathogenic variants in new predisposition genes for familial colorectal cancer vol.17, pp.2, 2009, https://doi.org/10.1038/gim.2014.89
  29. MIF4G domain containing protein regulates cell cycle and hepatic carcinogenesis by antagonizing CDK2-dependent p27 stability vol.34, pp.2, 2015, https://doi.org/10.1038/onc.2013.536
  30. TXNIP interaction with the Her-1/2 pathway contributes to overall survival in breast cancer vol.6, pp.5, 2009, https://doi.org/10.18632/oncotarget.3096
  31. Role of dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B) in S-phase entry of HPV E7 expressing cells from quiescence vol.6, pp.31, 2009, https://doi.org/10.18632/oncotarget.5222
  32. Eriocitrin from lemon suppresses the proliferation of human hepatocellular carcinoma cells through inducing apoptosis and arresting cell cycle vol.78, pp.6, 2009, https://doi.org/10.1007/s00280-016-3171-y
  33. TLE4 promotes colorectal cancer progression through activation of JNK/c-Jun signaling pathway vol.7, pp.3, 2009, https://doi.org/10.18632/oncotarget.6694
  34. Cdc2-like kinase 2 is a key regulator of the cell cycle via FOXO3a/p27 in glioblastoma vol.7, pp.18, 2009, https://doi.org/10.18632/oncotarget.8471
  35. TPX2 promotes glioma cell proliferation and invasion via activation of the AKT signaling pathway vol.12, pp.6, 2016, https://doi.org/10.3892/ol.2016.5371
  36. Rheb promotes cancer cell survival through p27Kip1‐dependent activation of autophagy vol.55, pp.2, 2009, https://doi.org/10.1002/mc.22272
  37. Overexpression of TRPV3 Correlates with Tumor Progression in Non-Small Cell Lung Cancer vol.17, pp.4, 2009, https://doi.org/10.3390/ijms17040437
  38. Cathepsin B promotes colorectal tumorigenesis, cell invasion, and metastasis vol.55, pp.5, 2016, https://doi.org/10.1002/mc.22312
  39. Do Helper T Cell Subtypes in Lymphocytic Thyroiditis Play a Role in the Antitumor Effect? vol.50, pp.5, 2016, https://doi.org/10.4132/jptm.2016.07.25
  40. Primary hyperparathyroidism vol.2, pp.1, 2016, https://doi.org/10.1038/nrdp.2016.33
  41. Loss of p27 expression is associated with MEN1 gene mutations in sporadic parathyroid adenomas vol.55, pp.2, 2009, https://doi.org/10.1007/s12020-016-0941-6
  42. Nonmonotonic Pathway Gene Expression Analysis Reveals Oncogenic Role of p27/Kip1 at Intermediate Dose vol.16, pp.None, 2017, https://doi.org/10.1177/1176935117740132
  43. Emerging links among Chromosome Instability (CIN), cancer, and aging vol.56, pp.3, 2009, https://doi.org/10.1002/mc.22539
  44. Intermedin attenuates high-glucose exacerbated simulated hypoxia/reoxygenation injury in H9c2 cardiomyocytes via ERK1/2 signaling vol.15, pp.3, 2009, https://doi.org/10.1177/1721727x17744096
  45. Transcriptional and post-transcriptional upregulation of p27 mediates growth inhibition of isorhapontigenin (ISO) on human bladder cancer cells vol.39, pp.3, 2009, https://doi.org/10.1093/carcin/bgy015
  46. Akt/p27 kip1 Pathway Is Not Involved in Human Insulinoma Tumorigenesis vol.2018, pp.None, 2009, https://doi.org/10.1155/2018/7865072
  47. Factors That Predict the Growth of Residual Nonfunctional Pituitary Adenomas: Correlations between Relapse and Cell Cycle Markers vol.2018, pp.None, 2009, https://doi.org/10.1155/2018/1876290
  48. Gp78 involvement in cellular proliferation: Can act as a promising modulator for cell cycle regulatory proteins? vol.233, pp.10, 2018, https://doi.org/10.1002/jcp.26618
  49. Multipronged activity of combinatorial miR-143 and miR-506 inhibits Lung Cancer cell cycle progression and angiogenesis in vitro vol.8, pp.None, 2009, https://doi.org/10.1038/s41598-018-28872-2
  50. The roles of moonlight ribosomal proteins in the development of human cancers vol.234, pp.6, 2019, https://doi.org/10.1002/jcp.27722
  51. Reactive Oxygen Species Modulator 1 (ROMO1), a New Potential Target for Cancer Diagnosis and Treatment vol.55, pp.3, 2009, https://doi.org/10.4068/cmj.2019.55.3.136
  52. Proteomics identifies neddylation as a potential therapy target in small intestinal neuroendocrine tumors vol.38, pp.43, 2009, https://doi.org/10.1038/s41388-019-0938-8
  53. Synemin Redefined: Multiple Binding Partners Results in Multifunctionality vol.8, pp.None, 2009, https://doi.org/10.3389/fcell.2020.00159
  54. Common Functions of Disordered Proteins across Evolutionary Distant Organisms vol.21, pp.6, 2020, https://doi.org/10.3390/ijms21062105
  55. RABL6A Is an Essential Driver of MPNSTs that Negatively Regulates the RB1 Pathway and Sensitizes Tumor Cells to CDK4/6 Inhibitors vol.26, pp.12, 2009, https://doi.org/10.1158/1078-0432.ccr-19-2706
  56. Increased Expression of NPM1 Suppresses p27 Kip1 Function in Cancer Cells vol.12, pp.10, 2009, https://doi.org/10.3390/cancers12102886
  57. The long non‐coding RNA landscape in triple‐negative breast cancer vol.54, pp.2, 2021, https://doi.org/10.1111/cpr.12966
  58. The Role of Immunohistochemical Markers for the Diagnosis and Prognosis of Adrenocortical Neoplasms vol.11, pp.3, 2009, https://doi.org/10.3390/jpm11030208
  59. Calpain-calpastatin system and cancer progression vol.96, pp.3, 2009, https://doi.org/10.1111/brv.12686
  60. Decomposition of cell activities revealing the role of the cell cycle in driving biofunctional heterogeneity vol.11, pp.1, 2009, https://doi.org/10.1038/s41598-021-02926-4