Advanced water treatment of high turbid source by hybrid module of ceramic microfiltration and activated carbon adsorption: Effect of organic/inorganic materials

Lee, Hyuk-Chan;Park, Jin-Yong;Yoon, Do-Young

  • Published : 20090500

Abstract

We investigated the effect of organic or inorganic materials on membrane fouling in advanced drinking water treatment by hybrid module packed with granular activated carbon (GAC) outside a tubular ceramic microfiltration membrane. Instead of natural organic matters (NOM) and fine inorganic particles in the natural water source, synthetic water was prepared with humic acid and kaolin. Concentrations of kaolin or humic acid were changed to see effects of inorganic or organic matter. And periodic water-back-flushing using permeate water was performed during 10 sec per filtration of 10 min. As a result, both the resistance of membrane fouling ($R_f$) and permeate flux (J) were influenced higher by concentration of humic acid rather than kaolin. It was proved that NOM like humic acid could be a more important factor on membrane fouling in drinking water treatment than fine inorganic particles. Treatment efficiencies of turbidity and $UV_{254}$ absorbance were very high above 97.4% and 92.0%, respectively.

Keywords

References

  1. A. R. Costa and M. N. Pinho, Desalination, 196, 55 (2006) https://doi.org/10.1016/j.desal.2005.08.030
  2. L. Fiksdal and T. O. Leiknes, J. Membr. Sci., 279, 364 (2006) https://doi.org/10.1016/j.memsci.2005.12.023
  3. Y. T. Lee and J. K. Oh, Membrane Journal, 9, 193 (1999)
  4. T. Leiknes, H. Odegaard and H. Myklebust, J. Membr. Sci., 242, 47 (2004) https://doi.org/10.1016/j.memsci.2004.05.010
  5. J. I. Oh and S. H. Lee, J. Membr. Sci., 254, 39 (2005) https://doi.org/10.1016/j.memsci.2004.12.030
  6. M. H. Kim and J. Y. Park, Membrane Journal, 11, 190 (2001)
  7. M. H. Cho, C. H. Lee and S. H. Lee, Desalination, 191, 386 (2006) https://doi.org/10.1016/j.desal.2005.08.017
  8. S. Gur-Reznik, I. Katz and C. G. Dosoretz, Water Res., 42, 1595 (2008) https://doi.org/10.1016/j.watres.2007.10.004
  9. H. S. Kim, S. Takizawa and S. Ohgaki, Desalination, 202, 271 (2007) https://doi.org/10.1016/j.desal.2005.12.064
  10. S. Mozia and M. Tomaszewska, Desalination, 162, 23 (2004) https://doi.org/10.1016/S0011-9164(04)00023-2
  11. H.K. Oh, S. Takizawa, S. Ohgaki, H. Katayama, K. Oguma and M. J. Yu, Desalination, 202, 191 (2007) https://doi.org/10.1016/j.desal.2005.12.054
  12. Y. T. Lee and J. K. Oh, Membrane Journal, 13, 219 (2003)
  13. D. B. Mosqueda-Jimenez and P. M. Huck, Desalination, 198, 173 (2006) https://doi.org/10.1016/j.desal.2005.12.025
  14. W. Yuan, A. Kocic and A. L. Zydney, J. Membr. Sci., 198, 51 (2002) https://doi.org/10.1016/S0376-7388(01)00622-6
  15. M. Heran and S. Elmaleh, J. Membr. Sci., 188, 181 (2001) https://doi.org/10.1016/S0376-7388(01)00351-9
  16. S. K. Karode, J. Membr. Sci., 188, 9 (2001) https://doi.org/10.1016/S0376-7388(00)00644-X
  17. P. Rai, C. Rai, G. C. Majumdara, S. D. Gupta and S. De, J. Membr. Sci., 283, 116 (2006) https://doi.org/10.1016/j.memsci.2006.06.018
  18. E. O. Kim, Membrane Journal, 3, 12 (1993)
  19. Y. T. Lee and M. H. Song, Membrane Journal, 14, 192 (2004)
  20. M. Cheryan, Technomic Publishing Company, Lancaster, Pennsylvania (1984)