DOI QR코드

DOI QR Code

Effect of oxygen ambient on structural, optical and electrical properties of epitaxial Al-doped ZnO thin films on r-plane sapphire by pulsed laser deposition

Kumar, Manoj;Mehra, R.M.;Choi, Se-Young

  • Published : 20090700

Abstract

Al-doped ZnO (ZnO:Al) thin films were grown epitaxially on r-plane sapphire substrate by pulsed laser deposition. Substrate temperature of 400 $^{\circ}C$ and pulsed repetition rate of 5 Hz was kept constant during the deposition. The effect of oxygen ambient pressure from 0.1 to 10 mTorr on structural, optical and electrical properties of the ZnO:Al films were investigated. The lowest resistivity was found to be 2.14 ${\times}$ $10^{-3}$ $\Omega$-cm with a carrier concentration of 6.89 ${\times}$ 1019 $cm^{-3}$ for the film deposited in 1 mTorr of oxygen pressure. ZnO:Al film revealed smoother surface obtained at oxygen ambient pressure of 1 mTorr. The epitaxial relationship between ZnO:Al films and r-plane sapphire was found to be (0001)$_{ZnO}$ // (01$\bar{1}$2)$_{sapp}$ and [10$\bar{1}$0]$_{ZnO}$ // [0$\bar{1}$11]$_{sapp}$. Photoluminescence spectra of the film grown at the oxygen ambient pressure of 1 mTorr exhibited peak at 3.34 eV, without any deep level.

Keywords

References

  1. Th. Pauporte, D. Lincot, Appl. Phys. Lett. 75 (1999) 3817 https://doi.org/10.1063/1.125466
  2. P. Fons, K. Iwata, S. Niki, A. Yamada, K. Matsubara, J. Cryst. Growth 201–202 (1999) 627 https://doi.org/10.1016/S0022-0248(98)01427-4
  3. Y. Chen, D.M. Bagnall, H.-J. Koh, K.-T. Park, K. Hiraga, Z. Zhu, T. Yao, J. Appl. Phys. 84 (1998) 3912 https://doi.org/10.1063/1.368595
  4. V. Khranovskyy, U. Grossner, O. Nilsen, V. Lazorenko, G.V. Lashkarev, B.G. Svensson, R. Yakimov, Thin Solid Films. 515 (2006) 472 https://doi.org/10.1016/j.tsf.2005.12.269
  5. T.W. Kim, Y.S. Yoon, J. Cryst. Growth 212 (2000) 411 https://doi.org/10.1016/S0022-0248(00)00242-6
  6. A. Kuramata, K. Hirino, K. Domen, K. Shinohara, T. Tanahashi, Appl. Phys. Lett. 67 (1995) 2521 https://doi.org/10.1063/1.114445
  7. Y. Hiroyama, M. Tamura, Jpn. J. Appl. Phys. 37 (1998) L630 https://doi.org/10.1143/JJAP.37.L630
  8. T. Yamamoto, T. Shiosaki, A. Kawabata, J. Appl. Phys. 51 (1980) 3113 https://doi.org/10.1063/1.328100
  9. T. Hata, T. Minamikawa, E. Noda, O. Morimoto, T. Hada, Jpn. J. Appl. Phys. Suppl. 18 (1979) 219 https://doi.org/10.7567/JJAPS.18S1.219
  10. C.R. Gorla, N.W. Emanetoglu, S. Liang, W.E. Mayo, Y. Lu, J. Appl. Phys. 85 (1999) 2595 https://doi.org/10.1063/1.369577
  11. Z. Fu, B. Gu, T. Zu, Thin Solid Films 402 (2002) 302 https://doi.org/10.1016/S0040-6090(01)01363-3
  12. Y. Chen, D.M. Bagnall, Z. Zhu, T. Sekiuchi, K. Park, K. Hiragu, T. Yao, S. Koyama, M.Y. Shen, T. Goto, J. Cryst. Growth 181 (1997) 165 https://doi.org/10.1016/S0022-0248(97)00286-8
  13. A.V. Singh, R.M. Mehra, N. Bhuthrath, A. Wakahara, A. Yoshida, J. Appl. Phys. 90 (2001) 5661 https://doi.org/10.1063/1.1415544
  14. V. Srikant, D.R. Clarke, J. Appl. Phys. 81 (1997) 6357 https://doi.org/10.1063/1.364393
  15. T. Moriyama, S. Fujita, Jpn. J. Appl. Phys. 44 (2005) 7919 https://doi.org/10.1143/JJAP.44.7919
  16. Y. Kashiwaba, T. Abe, S. Onodera, F. Masuoka, A. Nakagawa, H. Endo, I. Niikura, Y. Kashiwaba, J. Cryst. Growth 298 (2007) 477 https://doi.org/10.1016/j.jcrysgro.2006.10.062
  17. J.M. Chauveau, D.A. Buell, M. Laugt, P. Vennegues, M. Teisseire-Doninelli, S. Berard-Bergery, C. Deparis, B. Lo, B. Vinter, C. Morhain, J. Cryst. Growth 301– 302 (2007) 366 https://doi.org/10.1016/j.jcrysgro.2006.11.320
  18. C. Bundesmann, N. Ashkenov, M. Schubert, A. Rahm, H.V.W. Enckstern, E.M. Kaidashev, M. Lorenz, M. Grundmann, Thin Solid Films 455-456 (2004) 161 https://doi.org/10.1016/j.tsf.2003.11.226
  19. T. Moriyama, S. Fujitai, Jap. J. Appl. Phys. 44 (2005) 7919 https://doi.org/10.1143/JJAP.44.7919
  20. M. Wraback, H. Shen, S. Liang, C.R. Gorla, Y. Lu, Appl. Phys.Lett. 74 (1999) 507 https://doi.org/10.1063/1.124223
  21. J.M. Hvam, Solid State Commun. 27 (1978) 1347 https://doi.org/10.1016/0038-1098(78)91569-7
  22. Y.R. Ryu, S. Zhu, J.D. Budai, H.R. Chandrasekhar, P.F. Miceli, H.W. White, J. Appl. Phys. 88 (2000) 201 https://doi.org/10.1063/1.373643
  23. S. Cho, J. Ma, Y. Kim, Y. Sun, G.K.L. Wong, J.B. Ketterson, Appl. Phys. Lett. 75 (1999) 2761 https://doi.org/10.1063/1.125141
  24. S.K. Han, S.K. Hong, J.W. Lee, J.Y. Lee, J.H. Song, Y.S. Nam, S.K. Chang, T. Minegishi, T. Yao, J. Cryst. Growth 309 (2007) 121 https://doi.org/10.1016/j.jcrysgro.2007.09.025
  25. C.J. Pan, C.W. Tu, C.J. Tun, C.C. Lee, G.C. Chi, J. Cryst. Growth 305 (2007) 1333 https://doi.org/10.1016/j.jcrysgro.2007.04.030
  26. H.J. Ko, Y.F. Chen, Z. Zhu, T. Yao, I. Kobayashi, H. Uchiki, Appl. Phys. Lett. 76 (2000) 1905 https://doi.org/10.1063/1.126207

Cited by

  1. PROPERTIES OF GaN-DOPED ZnO THIN FILMS PREPARED BY PULSED LASER DEPOSITION vol.24, pp.28, 2009, https://doi.org/10.1142/s0217984910025085
  2. Effect of Oxygen Gas Pressure on Electrical, Optical, and Structural Properties of Al-Doped ZnO Thin Films Fabricated by Pulsed Laser Deposition for Use as Transparent Electrodes in All-Solid-State El vol.50, pp.8, 2009, https://doi.org/10.7567/jjap.50.08jd09
  3. Structural, electrical and photoluminescence properties of ZnO:Al films grown on MgO(001) by direct current magnetron sputtering with the oblique target vol.126, pp.3, 2009, https://doi.org/10.1016/j.matchemphys.2010.12.026
  4. Preparation of epitaxial films of the transparent conductive oxide Al:ZnO by reactive high‐pressure sputtering in Ar/O2 mixtures vol.210, pp.5, 2009, https://doi.org/10.1002/pssa.201200986
  5. Effects of Cr‐doping concentration on the structural, optical, and magnetic properties of ZnO thin films vol.210, pp.7, 2009, https://doi.org/10.1002/pssa.201329014
  6. Effect of the Sols’ Zinc Ions’ Concentration on Structural and Optical Properties of (Cu, Al) Co-Doped ZnO Thin Film by Sol - Gel Method vol.496, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amm.496-500.206
  7. Effects of withdrawal speed on the structural and optical properties of sol-gel derived ZnO thin films vol.373, pp.None, 2015, https://doi.org/10.1016/j.jmmm.2014.01.077
  8. Study of Micro/Nano Structuring and Mechanical Properties of KrF Excimer Laser Irradiated Al for Aerospace Industry and Surface Engineering Applications vol.14, pp.13, 2009, https://doi.org/10.3390/ma14133671