DOI QR코드

DOI QR Code

Investigation of Electrical Conduction in Low-dielectric-constant SiOC(-H) Thin Films Deposited by Using PECVD

  • Navamathavan, R. (Nano-Thin Film Materials Laboratory, Department of Physics, Cheju National University) ;
  • Kim, Chang-Young (Nano-Thin Film Materials Laboratory, Department of Physics, Cheju National University) ;
  • Lee, Heang-Seuk (Nano-Thin Film Materials Laboratory, Department of Physics, Cheju National University) ;
  • Woo, Jong-Kwan (Nano-Thin Film Materials Laboratory, Department of Physics, Cheju National University) ;
  • Yu, Young-Hun (Nano-Thin Film Materials Laboratory, Department of Physics, Cheju National University) ;
  • Choi, Chi-Kyu (Nano-Thin Film Materials Laboratory, Department of Physics, Cheju National University) ;
  • Lee, Heon-Ju (Department of Mechanical, Energy and Production Engineering, Cheju National University)
  • Published : 20090700

Abstract

The electrical characteristics of the low-dielectric-constant SiOC(-H) thin films with Al/SiOC(-H)/p-Si(100)/Al metal-insulator-semiconductor (MIS) structures have been investigated by using current-voltage (I-V), capacitance-voltage (C-V), and conductance-voltage (G/$\omega$-V) measurements. The SiOC(-H) films were deposited by using plasma enhanced chemical vapor deposition (PECVD) with different radio-frequency (rf) powers. Conductance and capacitance measurements were used to extract the interface state density in the MIS structures. From the experimental data and subsequent quasi-static C-V analysis, the energy distribution of the interface state density was obtained. The interface state density of the as-deposited and 400 $^{\circ}C$-annealed MIS structures decreased with increasing rf powers whereas the fixed charge density increased with increasing rf powers. The interface state densities and their electrical properties are strongly influenced by the radio frequency power.

Keywords

Acknowledgement

This work was supported by a Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea Government Ministry of Science and Technology (MOST), (No. 2009-0053020). The authors involved in this study were supported by a grant from the 2nd Stage BK-21 Project.

References

  1. M. Morgen, E. T. Ryan, J. H. Zhao, C. Hu, T. Cho and P. S. Ho, Annu. Rev. Mater. Sci. 30, 645 (2000) https://doi.org/10.1146/annurev.matsci.30.1.645
  2. Y. Xu, Y. Tsai, K. N. Tu, B. Zhao, Q. Z. Liu, M. Brongo, G. T. T. Sheng and C. H. Tung, Appl. Phys. Lett. 75, 853 (1999) https://doi.org/10.1063/1.124535
  3. M. Mikhail, R. Baklanov and K. Maex, Phil. Trans. R. Soc. A 364, 201 (2006) https://doi.org/10.1098/rsta.2005.1679
  4. K. Maex, M. R. Baklanov, D. Shamiryan, F. Lacopi, S. H. Brongersma and Z. S. Yanovitskaya, J. Appl. Phys. 93, 8793 (2003) https://doi.org/10.1063/1.1567460
  5. K. Endo, K. Shinoda and T. Tatsumi, J. Appl. Phys. 86, 2739 (1999) https://doi.org/10.1063/1.371119
  6. R. Navamathavan, C. Y. Kim, A. S. Jung, C. K. Choi and H. J. Lee, J. Korean Phys. Soc. 53, 351 (2008) https://doi.org/10.3938/jkps.53.351
  7. I. S. Bae, S. J. Cho, W. S. Choi, H. J. Cho, B. Hong, H. D. Jeong and J. H. Boo, Prog. Organ. Coat. 61, 245 (2008) https://doi.org/10.1016/j.porgcoat.2007.09.031
  8. S. K. Yang, H. H. Kim, H. S. Yoo, S. P. Chang, J. G. Lee and H. Y. Song, J. Korean Phys. Soc. 52, 1786 (2008) https://doi.org/10.3938/jkps.52.1786
  9. B. R. Kim, J. W. Kang, K. Y. Lee, J. M. Son and M. J. Ko, J. Mater. Sci. 42, 4591 (2007) https://doi.org/10.1007/s10853-006-0575-9
  10. B. D. Hatton, K. Landskron, W. J. Hunks, M. R. Bennett, D. Shukaris, D. D. Peovic and G. A. Ozin, Materials Today 9, 22 (2006)
  11. C. Y. Kim, A. S. Jung, R. Navamathavan, C. K. Choi and K. M. Lee, J. Korean Phys. Soc. 53, 371 (2008) https://doi.org/10.3938/jkps.53.371
  12. M. Aimadeddine, V. Arnal, A. Farcy, C. Guedj, T. Chevolleau, N. Posseme, T. David, M. Assous, O. Louveau, F. Volpi and J. Torres, Microelectronic Engg. 82, 341 (2005) https://doi.org/10.1016/j.mee.2005.07.015
  13. C. M. Garner, G. Kloster, G. Atwood, L. Mosley and A. C. Palanduz, Microelectonics Reliability 45, 919 (2005) https://doi.org/10.1016/j.microrel.2004.11.053
  14. C. Y. Kim, R. Navamathavan, H. J. Lee and C. K. Choi, Surf. Coat. Tech. 202, 5688 (2008) https://doi.org/10.1016/j.surfcoat.2008.06.044
  15. W. A. Hill and C. C. Coleman, Solid State Electron. 23, 987 (1980) https://doi.org/10.1016/0038-1101(80)90064-7
  16. S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981), p. 382
  17. E. H. Nicollian and J. R. Brews, MOS Physics and Technology (Wiley, New York, 1982), p. 331
  18. A. S. Zakirov, R. Navamathavan, Y. J. Jang, A. S. Jung, C. K. Choi and K. M. Lee, J. Korean Phys. Soc. 50, 1809 (2007) https://doi.org/10.3938/jkps.50.1809