DOI QR코드

DOI QR Code

Role of PbO-Based Glass Frit in Ag Thick-Film Contact Formation for Crystalline Si Solar Cells

Hong, Kyoung-Kook;Cho, Sung-Bin;Huh, Joo-Youl;Park, Hyun-Jung;Jeong, Ji-Weon

  • Published : 20090400

Abstract

The reactions between Ag pastes containing two types of PbO-based glass frits and an n-type (100) Si wafer during firing in air at 800 ${^{\circ}C}$ were investigated in order to understand the mechanism for the formation of inverted pyramidal Ag crystallites at the Si interface as well as the effect of the PbO content of the glass frit on Ag crystallite formation. Inverted pyramidal Ag crystallites were formed by the precipitation of Ag atoms dissolved in fluidized glass during the subsequent cooling process after firing. PbO in the glass frit did not participate directly in the reaction with the Si wafer. However, its content had a strong influence on the reaction rate at the glass/Si interface and, thus, on the size and distribution of the Ag crystallites. The effect of the PbO content in the glass could be understood from the higher Ag solubility and lower viscosity of the glass at the firing temperature with increasing PbO content. Based on the experimental results, a model was proposed for the formation of Ag crystallites at the glass/Si interface during the firing process of screen-printed thick-film Ag metallization.

Keywords

References

  1. R. J. S. Young and A. F. Carroll, Proc. 16th European Photovoltaic Solar Energy Conf., p. 1731, Glasgow, UK (2000)
  2. G. Schubert, F. Huster, and P. Fath, Proc. Photovoltaic in Europe Conf., p.343, Rome, Italy (2002)
  3. C. Ballif, D.M. Huljic, A. Hessler-Wyser, and G. Willeke, Proc. 29th IEEE Photovoltaic Specialists Conf., p.360, Glasgow, UK (2002)
  4. C. Ballif, D.M. Huljic, G. Willeke, and A. Hessler-Wyser, Appl. Phys. Lett. 82, 1878 (2003) https://doi.org/10.1063/1.1562338
  5. G. Schubert, F. Huster, and P. Fath, Proc. 19th European Photovoltaic Solar Energy Conf., p.813, Paris, France (2004)
  6. M. M. Hilali, B. To, and A. Rohatgi, Proc. 14th Workshop on Crystalline Silicon Solar Cell & Modules: Materials and Processes, p.109, Winter Park, Colorado (2004)
  7. M. M. Hilali, M. M. Al-Jassim, B. To, H. Mountinho, A. Rohatgi, and S. Asher, J. Electrochem. Soc. 152, 742 (2005) https://doi.org/10.1149/1.2001507
  8. M. M. Hilali, S. Srindharan, C. Khadilkar, A. Shaikh, A. Rohatgi, and S. Kim, J. Electron. Mater. 35, 2041 (2006) https://doi.org/10.1007/s11664-006-0311-x
  9. G. Schubert, F. Huster, and P. Fath, Sol. Eng. Mater. Sol. C. 90, 3399 (2006) https://doi.org/10.1016/j.solmat.2006.03.040
  10. B. Sopori, V. Mehta, P. Rupnowski, J. Appel, M. Romero, H. Moutinho, D. Domine, B. To, R. Reedy, M. Al-Jassim, A. Shaikh, N. Merchant, C. Khadilkar, D. Carlson, and M. Bennet, Proc. 17th Workshop on Crystalline Silicon Solar Cells & Modules: Materials and Processes, p.93, Vail, Colorado (2007)
  11. J. Hoornstra, G. Schubert, K. Broek, F. Granek, and C. LePrince, Proc. 31st IEEE Photovoltaic Specialists Conf., p.1293, Orlando, Florida (2005)
  12. J. Hoornstra, G. Schubert, C. LePrince, G. Wahl, K. Broek, G. Granek, B. Lenkeit, and J. Horzel, 20th European Photovoltaic Solar Energy Conf., p.651, Barcelona, Spain (2005)
  13. K. K. Hong, S. B. Cho, J. S. You, J. W. Jeong, S. M. Bea, and J. Y. Huh, Sol. Ener. Mat. Sol. C. 93, 898 (2009) https://doi.org/10.1016/j.solmat.2008.10.021
  14. S. Takeda, K. Yamamoto, and K. Matsumoto, J. Non-Cryst. Solids. 265, 133 (2000) https://doi.org/10.1016/S0022-3093(99)00711-5
  15. A. J. Nijdam, J. Suchtelen, J. W. Berenschot, J. G. E. Gardeniers, and M. Elwenspoek, J. Crystal Growth 198-199, 430 (1999) https://doi.org/10.1016/S0022-0248(98)01032-X
  16. E. Vazsonyi, K. De Clercq, R. Einhaus, E. Kerschaver, K. Said, J. Poortmans, J. Szlufcik, and J. Nijs, Sol. Eng. Mater. Sol. C. 57, 179 (1999) https://doi.org/10.1016/S0927-0248(98)00180-9
  17. R. Terai and R. Hayami, J. Non-Cryst. Solids 18, 217 (1975) https://doi.org/10.1016/0022-3093(75)90022-8

Cited by

  1. Photovoltaics literature survey (No. 72) vol.17, pp.6, 2009, https://doi.org/10.1002/pip.915
  2. Sintering and Contact Formation of Glass Containing Silver Pastes vol.27, pp.None, 2009, https://doi.org/10.1016/j.egypro.2012.07.104
  3. 광유도도금을 이용한 스크린 프린팅 결정질 실리콘 태양전지의 효율 향상 vol.26, pp.3, 2009, https://doi.org/10.4313/jkem.2013.26.3.246
  4. TLM 및 CTLM을 이용한 실리콘 태양전지 전면전극소재의 접촉 비저항 측정 비교연구 vol.38, pp.6, 2009, https://doi.org/10.3795/ksme-b.2014.38.6.539
  5. One-pot synthesis of Ag nanoparticle-coated Pb-based glass frit used in crystalline silicon solar cell vol.118, pp.4, 2015, https://doi.org/10.1007/s00339-014-8890-5
  6. Preparation and sintering of tellurium-doped silver powder for electrodes in silicon solar cells vol.123, pp.1437, 2009, https://doi.org/10.2109/jcersj2.123.345
  7. Current Transport Through Lead–Borosilicate Interfacial Glass Layers at the Screen–Printed Silver-Silicon Front Contact vol.5, pp.4, 2009, https://doi.org/10.1109/jphotov.2015.2409561
  8. Influence of tellurite glass on reaction between Si3N4 anti-reflection coating film and Ag paste for electrodes in Si solar cells vol.124, pp.3, 2009, https://doi.org/10.2109/jcersj2.15241
  9. 결정질 실리콘 태양전지에서 도금을 이용한 전극 형성 시 발생되는 레이저 손상 제거 vol.29, pp.6, 2009, https://doi.org/10.4313/jkem.2016.29.6.370
  10. Electrochemical nature of contact firing reactions for screen‐printed silicon solar cells: origin of “gray finger” phenomenon vol.24, pp.9, 2016, https://doi.org/10.1002/pip.2783
  11. Effect of composition of front-electrode-paste glass on electrical performance of multicrystalline silicon solar cells vol.28, pp.9, 2017, https://doi.org/10.1007/s10854-017-6394-8
  12. Impact of the Presence of Busbars During the Fast Firing Process on Contact Resistances vol.8, pp.4, 2009, https://doi.org/10.1109/jphotov.2018.2828824