Modeling Approaches for Estimating Cardinal Temperatures by Bilinear, Parabolic, and Beta Distribution Functions

쌍일차, 포물선 및 베타 함수를 이용한 주요 온도의 접근 방법

Cho, Young-Yeol;Oh, Myung-Min;Son, Jung-Eek
조영열;오명민;손정익

  • Published : 2009.06.30

Abstract

Estimation of the cardinal temperatures – the base, optimum and maximum temperatures – is indispensable because plant growth and development are affected by temperature. Although several models including linear and nonlinear functions are available to estimate the temperatures, a model suitable to the specific crop should be selected. The objectives of this study were to analyzed the estimated the cardinal temperatures for germination of spinach (Spinachia oleracea cv. Gwibin) by bilinear, parabolic and beta distribution models and to find a model reflecting the plant response to temperature adequately. Seeds of spinach were germinated in a growth chamber at constant temperatures of 2, 4, 8, 12, 16, 20, 24, 28, 32, and 36${^{\circ}C}$. Radicle emergence of 1 mm was scored as germination. The time course of germination was fitted using a logistic function. The base, optimum, and maximum temperatures were estimated by regression of the inverse time to 50% germination rate against temperature gradient. We obtained the base, optimum and maximum temperatures of -4.0, 17.1 and 33.2${^{\circ}C}$ in bilinear function; -0.9, 15.8 and 32.5${^{\circ}C}$ in parabolic function; and -2.6, 16.6 and 32.6${^{\circ}C}$ in beta distribution function, respectively. Among the three functions, a beta distribution function had a good agreement with the plant response to temperature showing the highest R$^{2}$ (coefficient of determination) and the lowest RMSE.

주요 온도(최저, 적정 및 최고 온도)의 예측은 식물의 생육과 발육 때문에 필수적인 요소이다. 주요 온도를 결정하기 위하여 다양한 모델이 사용되고 있지만, 작물의 종류에 따라서 적정한 함수의 선택이 필요하다. 본 실험의 목적은 쌍일차, 포물선 및 베타함수에 의한 시금치 주요 온도의 비교를 통하여 각 모델의 특징을 분석하고 적정 모델을 제시하는 것이다. 시금치 종자를 2, 4, 8, 12, 16, 20, 24, 28, 32, 및 36${^{\circ}C}$로 항온이 되는 생육상에서 발아시켰다. 유근이 1mm 정도 나왔을 때를 발아로 기록하였다. 시간경과에 따른 발아 모델은 로지스틱 함수를 이용하였다. 최저, 적정 및 최고 온도를 50% 발아했을 때의 역수로 예측하였다. 쌍일차 함수에서 최저, 적정 및 최고 온도는 각각 -4.0, 17.1, 33.2${^{\circ}C}$였다. 포물선 함수에서 최저, 적정 및 최고 온도는 각각 -0.9, 15.8, 32.5${^{\circ}C}$였다. 베타 함수에서 최저, 적정 및 최고 온도는 각각 -2.6, 16.6, 32.6${^{\circ}C}$이었다. 적용된 3가지의 모델 중에서 베타함수에 의한 모델은 최소 RMSE와 최대 R$^{2}$(결정계수)를 보이면서 시금치의 온도 반응의 결과를 잘 나타냈다.

Keywords

References

  1. Aflakpui, G.K.S., P.J. Gregory, and R.J. Froud-Williams. 1998. Effect of temperature on seed germination rate of Striga hermonthica (Del.) Benth. Crop Protection 17:129-133 https://doi.org/10.1016/S0261-2194(97)00096-3
  2. Atherton, J.G. and A.M. Farooque. 1982. High temperature and germination in spinach. I. The role of the pericarp. Sci. Hort. 19:25-32 https://doi.org/10.1016/0304-4238(83)90040-7
  3. Cho, J.Y., S.H. Yoon, and E.U. Lee. 1996. Principles of cultivation. 1st ed. Hyangmunsa. Seoul, Korea. p. 252
  4. Cho, Y.Y., J.H. Bae, and J.E. Son. 2008. Use of parabolic function to calculate cardinal temperatures in pak-choi (Brassica campestris ssp. chinensis). Hort. Environ. Biotechnol. 49(3): 145-148
  5. Craufurd, P.Q., A. Qi, R.H. Ellis, R.J. Summerfield, E.H. Roberts, and V. Mahalakshmi. 1998. Effect of temperature on time to panicle initiation and leaf appearance in sorghum. Crop Sci. 38:942-947 https://doi.org/10.2135/cropsci1998.0011183X003800040011x
  6. Jami Al-Ahmadi, M. and M. Kafi. 2007. Cardinal temperatures for germination of Kochia scoparia (L.). J. Arid Environ. 68:308-314 https://doi.org/10.1016/j.jaridenv.2006.05.006
  7. Leskovar, D.I., V. Esensee, and H. Belefant-Miller. 1999. Pericarp, leachate, and carbohydrate involvement in thermoinhibition of germinating spinach seeds. J. Amer. Soc. Hort. Sci. 124: 301-306
  8. McMaster, G.S. and W.W. Wilhelm. 1997. Growing degree-days: One equation, two interpretations. Agr. Forest Meteorol. 87:291-300 https://doi.org/10.1016/S0168-1923(97)00027-0
  9. Monteith, J.L. 1981. Climatic variation and the growth of crops. Quarterly Journal of Royal Meteorology Society 107:749-774 https://doi.org/10.1256/smsqj.45401
  10. Roch\acute{e}, C.T., D.C. Thill, and B. Shafil. 1997. Estimation of base and optimum temperatures for seed germination in common crupina (Crupina vulgaris). Weed Sci. 45:529-533
  11. R\Oeggen, O. 1984. Effect of temperature and moisture on germination in spinach (Spinacia oleracea L.). Sci. Hort. 24:221-229 https://doi.org/10.1016/0304-4238(84)90105-5
  12. Seefeldt, S.S., K.K. Kidwell, and J.E. Waller. 2002. Base growth temperatures, germination rates and growth response of contemporary spring wheat (Triticum aestivum L.) cultivars from the US Pacific Northwest. Field Crops Res. 75:47-52 https://doi.org/10.1016/S0378-4290(02)00007-2
  13. Yan, W. and L.A. Hunt. 1999. An equation for modeling the temperature response of plants using only the cardinal temperature. Ann. Bot. 84:607-614 https://doi.org/10.1006/anbo.1999.0955
  14. Yin, X. and M.J. Kropff, G. McLaren, and R.M. Visperas. 1995. A nonlinear model for crop development as a function of temperature. Agr. Forest Meteorol. 77:1-16 https://doi.org/10.1016/0168-1923(95)02236-Q