Seasonal Changes in Dry Matter Productivity of Korean Native Plants, Aster koraiensis, Iris ensata, and Hemerocallis fulva

한국자생식물 벌개미취, 꽃창포, 원추리의 생육시기별 건물생산성 변화

Nam, Hyo-Hoon;Lee, Hyun-Sook;Woo, Jin-Ha
남효훈;이현숙;우진하

  • Published : 2009.09.30

Abstract

This study was conducted to investigate the seasonal changes of dry matter productivity of three species of Korean native plants, Aster koraiensis, Iris ensata, and Hemerocallis fulva. Dry weight of aboveground organs from transplanting to flowering and that of underground organs after flowering respectively contributed to the greatest part of whole dry weight. Ratios of dry weights of the aboveground and underground organs in the first year were higher than that in the second year, indicating that assimilation product was distributed more to storage organs, rhizome or tuberous root in the second year. There was one peak point in relative growth rates (RGRs) and net assimilation rates (NARs) of A. koraiensis and H. fulva, while there were two peak points in I. ensata at the same year. Those points were concurrent with an early growth stage and an enlargement period of storage organs. The distribution of photosynthetic organ changed in the similar pattern of RGR or NAR. Changes of specific leaf area for yearly averages of crop growth rate (CGR) of A. koraiensis, I. ensata and H. fulva were 4.6, 6.9, and 3.3 g.m$^{-2}$.d$^{-1}$ in the first year, and 23.4, 31.5, and 14.7 g.m$^{-2}$.d$^{-1}$ in the second year, respectively. NAR or leaf area index was positively correlated with CGR. There was a positive correlation between soil moisture and LAI, while a negative correlation was observed between NAR and climatic factors.

한국자생식물 3종의 작물화를 위하여 1차 생산성을 평가하고 생산성 향상을 위한 기초 자료를 얻고자 본 연구를 수행하였다. 정식 후부터 개화기까지는 지상부의 건물중이, 개화 후는 지하부 건물중의 증가가 전체 건물중 변화에 많은 영향을 주었다. T/R률의 연차간 평균은 정식 1년차가 정식 2년차에 비해 높아 생육시기가 경과하면서 저장기관의 동화산물 축적량이 증가하였다. 벌개미취와 원추리의 상대생장률, 순동화율은 연차별로 1회, 꽃창포는 2회의 최대값을 보였고 상대생장률과 순동화율은 고도의 정의 상관관계를 보였다. 작물생장률의 정식 1, 2년차 평균은 각각 벌개미취 4.6, 23.4g.m$^{-2}$.d$^{-1}$, 꽃창포 6.9, 31.5g.m$^{-2}$.d$^{-1}$, 원추리 3.3, 14.7g.m$^{-2}$.d$^{-1}$이었으며 식물종의 잎 분화특성에 따라 순동화율 또는 엽면적지수와 정의 상관이 인정되었다. 생장특성 해석 형질과 기상요인과의 관계에서 평균기온이 식물체 전체의 상대생장률과, 토양수분과 엽면적지수간 유의한 정의 상관을 보였고 순동화율은 기상요인과 부의 상관을 보였다.

Keywords

References

  1. Evans, G.C. 1972. The quantitative analysis of plant growth. Blackwell Scientific Publications. Oxford. p. 189-417
  2. Hahn, S.J., J.Y. Oh, H.J. Hwang, and H.T. Kim. 1996. Studies on the ecotype, changes with time in time in dry weight of organs and specific growth rate of the introduced garlic cultivars. J. Kor. Soc. Hort. Sci. 37:731-735
  3. Hahn, S.J. and S.M. Oh. 1991. Studies on the quantitative growth analysis of radish (Raphnus sativus L.). J. Kor. Soc. Hort. Sci. 32:279-285
  4. Hunt, R. 1982. Plant growth curves: The functional approach to plant growth analysis. Thomson Litho Ltd., East Kilbride. Scotland. p. 14-60
  5. Hunt, R. and J.H.C. Cornelissen. 1997. Components of relative growth rate and their interrelations in 59 temperate plant species. New Phytol. 135:395-417 https://doi.org/10.1046/j.1469-8137.1997.00671.x
  6. Kim, C.H., S.C. Park, H.W. Lee, and H.K. Kang. 1998. Comparison of growth characteristics, forage yield and growth analysis in corn hybrids for silage production. J. Kor. Grassl. Forage Sci. 18:79-88
  7. Kim, H.Y. and S.D. Song. 1975. Studies on the dry matter production and growth analysis of rice plant. Korean J. Crop Sci. 20:74-85
  8. Kim, M.R., S.J. Hahn, and S.M. Oh. 1990. Studies on the quantitative growth of snap bean (Phaseolus vulgaris L.). J. Kor. Soc. Hort. Sci. 31:370-376
  9. Korea Forest Service (KFS). 2001. Regulation of management of native plants and forest resources. Korea Forest Service. Daejeon, Korea
  10. Korean Wild Florist Association (KWFA). 2006. Annual report of Korean wild flower production. Korean Wild Florist Association. Seoul, Korea
  11. Lee, C.B. 2003. An illustrated book of the Korean flora. Hyangmun Press. Seoul, Korea
  12. Meziane, D. and B. Shipley. 1999. Interacting components of interspecific relative growth rate: Constancy and change under differing conditions of light and nutrient supply. Functional Ecol. 13:611-622 https://doi.org/10.1046/j.1365-2435.1999.00359.x
  13. Poorter, H. and C. Remkes. 1990. Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83:553-559 https://doi.org/10.1007/BF00317209
  14. Shipley, B. 2002. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: Relationship with daily irradiance. Functional Ecol. 16:682-689 https://doi.org/10.1046/j.1365-2435.2002.00672.x
  15. Song, J.S., M.S. Roh, and J.K, Suh. 2001. New floral crops of the world and the prospect of Korean wild flowers. Kor. J. Hort. Sci. Technol. 19:253-261
  16. Storkey, J. 2004. Modeling seedling growth rates of 18 temperate arable weed species as a function of the environment and plant traits. Ann. Bot. 93:681-689 https://doi.org/10.1093/aob/mch095
  17. Warren, C.R. and M.A. Adams. 2005. What determines interspecific variation in relative growth rate of Eucalyptus seedlings? Oecologia 144:373-381 https://doi.org/10.1007/s00442-005-0092-6
  18. Watson, D.J. 1952. The physiological basis of variation in yield. Advances in Agronomy 4:101-145 https://doi.org/10.1016/S0065-2113(08)60307-7
  19. Yamauchi, M. 1994. Physiological bases of higher yield potential in $F_1$ hybrids, p. 77-80. In: S.S. Virmani (ed.), Hybrid rice technology: New development and future prospects. IRRI
  20. Vile, D., e. Garnier, B. Shipley, G. Laurent, M.L. Navas, C. Roumet, S. Lavorel, S. Diaz, J.G. Hodgson, F. Lloret, G.F. Midgley, H. Poorter, M.C. Rutherford, P.J. Wilson, and I.J.Wright. 2005. Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann. Bot. 96:1129-1136 https://doi.org/10.1093/aob/mci264