DOI QR코드

DOI QR Code

Fabrication and piezoelectricity of 0–3 cement based composite with nano-PZT powder

Li, Zong-Jin;Gong, Hong-Yu;Zhang, Yu-Jun

  • Published : 20090500

Abstract

Lead zirconate titanate (Pb($Zr_{0.52}Ti_{0.48}$)$O_3$) (PZT) nano-powder with a perovskite structure was fabricated using sol-gel process. The average crystallite diameter of the PZT powder is calculated to be 23.6 nm and the average agglomerate size is about 200 nm. The 0-3 cement based nano-PZT composites were obtained by pressing the mixture of white cement and the nano-PZT powders under a high pressure followed by steam curing. The properties of the nano-PZT/cement piezoelectric composites have been measured and compared to the PZT/cement composites incorporated with ground coarse PZT particles. The enhanced piezoelectricity of the nano-PZT/cement composites can be attributed to the good connectivity between the nano-PZT particles among the cement matrix.

Keywords

References

  1. J.F. Tressler, S. Alkoy, R.E. Newnham, J. Electroceram. 2 (1998) 257 https://doi.org/10.1023/A:1009926623551
  2. A.J. Moulson, J.M. Herbert, Electroceramics, second ed., John Wiley & Sons, New York, 2003
  3. C.Z. Rosen, B.V. Hiremath, R. Newnham, Piezoelectricity, American Institute of Physics, New York, 1992
  4. Z. Li, D. Zhang, K. Wu, J. Am. Ceram. Soc. 85 (2002) 305 https://doi.org/10.1111/j.1151-2916.2002.tb00089.x
  5. Z. Li, B. Dong, D. Zhang, Cement Concrete Compos. 27 (2005) 27 https://doi.org/10.1016/j.cemconcomp.2004.02.001
  6. B. Dong, Z. Li, Compos. Sci. Technol. 65 (2005) 1363 https://doi.org/10.1016/j.compscitech.2004.12.006
  7. X. Cheng, Sh. Huang, J. Chang, et al., J. Eur. Ceram. Soc. 25 (2004) 3223 https://doi.org/10.1016/j.jeurceramsoc.2004.07.031
  8. A. Chaipanich, T. Tunkasiri, Curr. Appl. Phys. 7 (2007) 285 https://doi.org/10.1016/j.cap.2006.08.003
  9. L.Q. Weng, X.J. Bao, K. Sagoe-Crentsil, Mater. Sci. Eng. B96 (2002) 307
  10. K. Rama Mohana Rao, A.U. Prasada Rao, S. Komarneni, Mater. Lett. 28 (1996) 463 https://doi.org/10.1016/0167-577X(96)00106-1
  11. G.H. Yi, Z. Wu, M. Sayer, J. Appl. Phys. 64 (1988) 2717 https://doi.org/10.1063/1.341613
  12. C. Suryanarayana, Norton M. Grant, X-ray Diffraction: A Practical Approach, Plenum Press, New York and London, 1998
  13. A. Safari, Development of piezoelectric composites for transducers, J. Phys. III France 4 (1994) 1129-1149 https://doi.org/10.1051/jp3:1994191
  14. G. Rujijanagul, S. Boonyakul, T. Tunkasiri, J. Mater. Sci. Lett. 20 (2001) 1943-1945 https://doi.org/10.1023/A:1013182602054
  15. Moon-Ho Lee, Arvind Halliyal, Robert E. Newnham, J. Am. Ceram. Soc. 72 (6) (1989) 986-990 https://doi.org/10.1111/j.1151-2916.1989.tb06256.x

Cited by

  1. Research on Electrical Double Percolation of Carbon Black-Filled Cement-Based Composites vol.311, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amr.311-313.201
  2. A study on polarization properties of the carbon black modified 0-3 cement-based piezoelectric composites vol.174, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amm.174-177.791
  3. Effect of Pozzolanic Materials and Poling Field on Electromechanical Coupling Coefficient of Cement-Based Piezoelectric Composites vol.512, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amr.512-515.2867
  4. High piezoelectricity 0-3 cement-based piezoelectric composites vol.76, pp.None, 2009, https://doi.org/10.1016/j.matlet.2012.02.094
  5. 알칼리계 무연 압전 세라믹과 에폭시 복합소재의 유전 및 압전 특성 vol.25, pp.6, 2012, https://doi.org/10.4313/jkem.2012.25.6.420
  6. Electrical and Structural Properties of Multioriented Thin Film PZT Deposited at Room Temperature by RF-PVD vol.464, pp.None, 2009, https://doi.org/10.4028/www.scientific.net/amm.464.89
  7. Influence of aluminium inclusions on dielectric properties of three-phase PZT-cement-aluminium composites vol.26, pp.2, 2009, https://doi.org/10.1680/adcr.12.00059
  8. Effect of aged binder on piezoelectric properties of cement-based piezoelectric composites vol.225, pp.4, 2014, https://doi.org/10.1007/s00707-013-1055-3
  9. Crystallization kinetics and growth mechanism of Pb(Zr0.52·Ti0.48)O3 nanopowders vol.116, pp.1, 2009, https://doi.org/10.1007/s00339-014-8406-3
  10. Design, fabrication, and properties of 2-2 connectivity cement/polymer based piezoelectric composites with varied piezoelectric phase distribution vol.116, pp.24, 2009, https://doi.org/10.1063/1.4904931
  11. Investigation of cement–sand-based piezoelectric composites vol.27, pp.12, 2016, https://doi.org/10.1177/1045389x15600901
  12. Admixtures in Cement-Matrix Composites for Mechanical Reinforcement, Sustainability, and Smart Features vol.9, pp.12, 2009, https://doi.org/10.3390/ma9120972
  13. Numerical Analysis and Optimization on Piezoelectric Properties of 0-3 Type Piezoelectric Cement-Based Materials with Interdigitated Electrodes vol.7, pp.3, 2009, https://doi.org/10.3390/app7030233
  14. Investigation of Microstructure, Morphology, Mechanical, and Dielectric Properties of PVA/PbO Nanocomposites vol.36, pp.3, 2009, https://doi.org/10.1002/adv.21616
  15. Functional Cementitious Composites for Pyroelectric Applications vol.47, pp.4, 2009, https://doi.org/10.1007/s11664-018-6071-6
  16. Piezoelectric Flexible LCP-PZT Composites for Sensor Applications at Elevated Temperatures vol.14, pp.2, 2009, https://doi.org/10.1007/s13391-018-0027-0
  17. Effect of graphite on poling time and electrical properties of barium zirconate titanate-Portland cement composites vol.526, pp.1, 2009, https://doi.org/10.1080/00150193.2018.1456306
  18. Study on the engineering and electricity properties of cement mortar added with waste LCD glass and piezoelectric powders vol.21, pp.3, 2009, https://doi.org/10.12989/cac.2018.21.3.311
  19. Effect of piezoelectric ceramic particles size gradation on piezoelectric properties of 0–3 cement-based piezoelectric composites vol.27, pp.8, 2018, https://doi.org/10.1088/1361-665x/aad0be
  20. Intrinsic Sensing Properties of Chrysotile Fiber Reinforced Piezoelectric Cement-Based Composites vol.18, pp.9, 2009, https://doi.org/10.3390/s18092999
  21. Pyroelectric energy conversion using Ba0.85Sr0.15Zr0.1Ti0.9O3 ceramics and its cement-based composites vol.30, pp.6, 2009, https://doi.org/10.1177/1045389x19828491
  22. Pyroelectric figures of merit and energy harvesting potential in ferroelectric cement composites vol.31, pp.19, 2009, https://doi.org/10.1007/s10854-020-04226-5
  23. Cement-Based Piezoelectric Ceramic Composites for Sensing Elements: A Comprehensive State-of-the-Art Review vol.21, pp.9, 2009, https://doi.org/10.3390/s21093230
  24. Energy-harvesting concrete for smart and sustainable infrastructures vol.56, pp.29, 2021, https://doi.org/10.1007/s10853-021-06322-1
  25. High performance piezoelectric composite fabricated at ultra low temperature vol.229, pp.None, 2009, https://doi.org/10.1016/j.compositesb.2021.109486