DOI QR코드

DOI QR Code

Inverse Verification of the Dose Distribution for Intensity Modulated Radiation Therapy Patient-specific Quality Assurance Using Dynamic MLC Log Files

Lee, Jeong-Woo;Park, Jeong-Hoon;Chung, Jin-Beom;Park, Ji-Yeon;Choe, Bo-Young;Suh, Tae-Suk;Lee, Doo-Hyun;Hong, Se-Mie;Kang, Min-Young;Choi, Kyoung-Sik

  • Published : 20091000

Abstract

The aim of this study was to investigate a novel method for verification of the dose distribution for intensity modulated radiation therapy (IMRT) patient-specific quality assurance (QA) using dynamic multi-leaf collimator (DMLC) log files (Dynalog files). Dynalog files are recorded every 50 ms by using a MLC controller during the IMRT treatment. Dynalog files contain actual MLC positional information for various delivered dose fractions. As the nonuniform fluence is directly influenced by the MLC positional accuracy, our method for IMRT patient-specific QA can be performed using this information. Three nasopharyngeal cancer patients were selected for the evaluation. We developed an in-house program to convert MLC log files from an MLC controller to delivered MLC (dMLC) field files for the interface between the MLC controller and the treatment planning system. The in-house software, DMLC field file (DFF) converter, was written using programming language (Visual C++ 2005, Microsoft, Redmond, WA, USA). For inverse planning, Eclipse (v. 6.5, Varian, Palo Alto, USA) was used. The MLC log files were converted to dMLC files. The IMRT plans were recalculated and compared with the original plans. Comparisons were done via planar dose distributions using OP-IMRT software (v. 1.4, Wellhofer Dosimetrie, Germany) and dose volume histograms (DVHs) for targets and organs at risk (OARs). Gamma index (dose difference: 3%, distance to agreement: 3 mm) calculations were also performed for a quantitative analysis. There were significant differences (maximum dose difference: 587 cGy, maximum volume difference at 3000 cGy: 17%) in the DVHs of the parotid glands between planned MLC (pMLC)-based and delivered MLC (dMLC)-based inverse IMRT QA (IVQA) plans for all three patients. The histograms showed an increased dose-volume in the dMLC-based IVQA deliveries compared to reference (Ref.) IMRT plans. Based on the present study, we can confirm the availability of our new approach to perform IMRT patient-specific QA providing a convenient and clear tool for IMRT dose verification. In the future, this method should be available for inverse on-treatment dose verification and for pre-treatment IMRT QA.

Keywords

References

  1. A. L. Boyer, E. B. Butler, T. A. DiPetrillo, M. J. Enger, B. Fraass, W. Grant, C. C. Ling, D. A. Low, T. R. Mackie, R. Mohan, J. A. Purdy and M. Roach, Int. J. Radiation Oncology Biol. Phys. 51, 880 (2001) https://doi.org/10.1016/S0360-3016(01)01749-7
  2. T. LoSasso, C. S. Chui and C. C. Ling, Med. Phys. 28, 2209 (2001) https://doi.org/10.1118/1.1410123
  3. G. A. Ezzell, J. M. Galvin, D. A. Low, J. R. Palta, I. Rosen, M. B. Sharpe, P. Xia, Y. Xiao, L. Xing and C. X. Yu, Med. Phys. 30, 2089 (2003) https://doi.org/10.1118/1.1591194
  4. J. M. Galvin, G. Ezzell, A. Eisbrauch, C. X. Yu, B. Butler, Y. Xiao, I. Rosen, J. Rosenman, M. Sharpe, L. Xing, P. Xia and T. Lomax, Int. J. Radiation Oncology Biol. Phys. 58, 1616 (2004) https://doi.org/10.1016/j.ijrobp.2003.12.008
  5. C. D. Venecia and P. Besa, J. Appl. Clin. Med. Phys. 5, 37 (2004) https://doi.org/10.1120/jacmp.2021.25275
  6. B. E. Nelms and J. A. Simon, J. Appl. Clin. Med. Phys. 8, 76 (2007)
  7. D. A. Low, W. B. Harms, S. Mutic and J. A. Purdy, Med. Phys. 25, 656 (1998) https://doi.org/10.1118/1.598248
  8. W. B. Harms, D. A. Low, J. W. Wong and J. A. Purdy, Med. Phys. 25, 1830 (1998) https://doi.org/10.1118/1.598363
  9. T. Depuydt, A. V. Esch and D. P. Huyskens, Radiother. Oncol. 62, 309 (2002) https://doi.org/10.1016/S0167-8140(01)00497-2
  10. N. L. Childress and I.I. Rosen, Int. J. Radiation Oncology Biol. Phys. 56, 1464 (2003) https://doi.org/10.1016/S0360-3016(03)00430-9
  11. L. Ma, N. Phaisangittisakul, C. X. Yu and M. Sarfaraz, Med. Phys. 30, 2082 (2003) https://doi.org/10.1118/1.1592896
  12. J. G. Li, J. F. Dempsey, L. Ding, C. Liu and J. R. Palta, Med. Phys. 30, 799 (2003) https://doi.org/10.1118/1.1567951
  13. A. M. Stell, J. G. Li, O. A. Zeidan and J. F. Dempsey, Med. Phys. 31, 1593 (2004) https://doi.org/10.1118/1.1751011
  14. W. Luo, J. Li, R. A. Price, L. Chen, J. Yang, J. Fan, Z. Chen, S. McNeeley, X. Xu and C. M. Ma, Med. Phys. 33, 2557 (2006) https://doi.org/10.1118/1.2208916
  15. L. Lee, Q. T. Le and L. Xing, Int. J. Radiation Oncology Biol. Phys. 70, 634 (2008) https://doi.org/10.1016/j.ijrobp.2007.09.054
  16. Varian Medical Systems. DynaLog File Viewer reference guide, (Varian Medical System, Inc. 2003)
  17. B. Poppe, A. Blechschmidt, A. Djouguela, R. Kollhoff, A. Rubach, K. C. Willborn and D. Harder, Med. Phys. 33, 1005 (2006) https://doi.org/10.1118/1.2179167
  18. J. W. Lee, S. Hong, Y. L. Kim, K. S. Choi, J. B. Jung, D. H. Lee and T. S. Suh, Korean J. Med. Phys. 17, 131 (2006)
  19. A. V. Esch, C. Clermont, M. Devillers, M. Iori and D. P. Huyskens, Med. Phys. 34, 3825 (2007) https://doi.org/10.1118/1.2777006
  20. J. W. Lee, J. B. Chung, D. H. Lee, J. H. Park, B. Y. Choe, T. S. Suh, H. S. Jang, S. Hong, B. M. Park, M. Y. Kang, K. S. Choi and Y. H. Kim, J. Korean Phys. Soc. 53, 3436 (2008) https://doi.org/10.3938/jkps.53.3436

Cited by

  1. Radiobiological model-based bio-anatomical quality assurance in intensity-modulated radiation therapy for prostate cancer vol.53, pp.6, 2009, https://doi.org/10.1093/jrr/rrs049
  2. A simple DVH generation technique for various radiotherapy treatment planning systems for an independent information system vol.67, pp.1, 2009, https://doi.org/10.3938/jkps.67.254
  3. Feasibility of using the linac real-time log data for VMAT treatment verification vol.851, pp.None, 2009, https://doi.org/10.1088/1742-6596/851/1/012035
  4. Feasibility Study of the Fluence-to-Dose Network (FDNet) for Patient-Specific IMRT Quality Assurance vol.75, pp.9, 2019, https://doi.org/10.3938/jkps.75.724
  5. Estimation of Dynamic MLC Parameters Using Dynamic MLC Position Accuracy Analysis Software in Prostate IMRT vol.76, pp.9, 2009, https://doi.org/10.6009/jjrt.2020_jsrt_76.9.936