Effect of Dietary Inuloprebiotics on Performance, Serum Immunoglobulin and Caecal Microflora in Broiler Chickens

이눌로프리바이오틱스의 사료 내 첨가가 육계의 성장능력, 혈액 면역물질 및 맹장 미생물에 미치는 영향

  • 박상오 (강원대학교 동물생명과학대학) ;
  • 박병성 (강원대학교 동물생명과학대학)
  • Published : 2009.12.31

Abstract

The potential of encapsulated inuloprebiotics from domestic Jerusalem artichokes (Helianthustuberosus) as natural antibacterial growth promotor for an antibiotic replacement in broiler chickens was presently assessed through assays of growth performance, serum immunoglobulin production and influence on caecal microflora. Two hundred-forty, 1-day-old, male broilers (Ross 308) were randomly allotted to four treatments (T1-T4), with three replicate pens per treatment and 20 chicks per pen. Broiler chicks were fed a basal diet (T1: control) or basal diet plus antibiotics (T2: Chlorotetracycline, 0.10%), 300 ppm of the inuloprebiotics (T3), or 450 ppm of the inuloprebiotics (T4) for 35 days. Body weight, dressing percentage or weight of breast and thigh muscles relative to carcass weight of T3 and T4 broiler chickens was significantly (P<0.05) higher than T1 and T2 broiler chickens. The weight of abdominal fat from T3 and T4 broiler chickens were significantly (P<0.05) lower than that of T1 and T2 chickens. Serum immunoglobulins in the T3 and T4 groups were significantly (P<0.05) elevated compared to the T1 and T2 groups. The weight of immune organs, thymus and Bursa of Fabricius relative to live body weight in the T3 and T4 groups were significantly (P<0.05) higher than the T1 and T2 groups. Bifidobacteria and Lactobacillus, which are beneficial bacteria, were present in greater numbers in the caecum of T3 and T4 birds than T1 and T2 groups, whereas potentially harmful Escherichiacoli and Salmonella were present in lower numbers, with differences being significant (P<0.05). These results suggest that a diet supplemented with 300 ppm of inuloprebiotics has potential as an antibiotic replacement for organic livestock feed supplement intended to improve production of broiler chicken.

본 연구는 브로일러 사료 내 항생물질을 대체하기 위한 천연항균성장촉진제로서 국산 돼지감자로부터 추출, 제조한 미세캡슐화, 이눌로프리바이오틱스의 첨가에 따른 성장능력, 혈액 면역물질 및 맹장 미생물 변화를 조사하였다. 로스계통(Ross 308)의 성감별을 실시한 수컷 브로일러 240수를 4처리구$\times$3반복(반복 펜 당 20수)으로 완전임의 배치하였다. 브로일러는 기본사료(T1: 대조구), 항생제(T2: Chlorotetra cycline, CTC 0.1%), 이눌로프리바이오틱스 300ppm(T3), 이눌로프리바이오틱스 450ppm(T4) 함유사료를 각각 35일 동안 섭취하였다. 브로일러의 체중 및 도체율은 이눌로프리바이오틱스를 섭취한 처리구(T3, T4)가 대조구 (T1) 및 항생제(T2) 함유사료를 섭취한 처리구에 비해서 높았으며 통계적인 유의차(P<0.05)가 인정되었다. 브로일러의 도체중에 대한 비율로서 나타낸 닭 가슴살 및 다리살의 무게 비율은 T3, T4가 T1, T2에 비해서 높았으며 통계적인 유의차(P<0.05)가 인정되었다. 복강지방 무게는 T3, T4가 T2, T1에 비해서 유의하게(P<0.05) 감소경향을 나타냈다. 혈액 면역물질 IgG는 T3, T4가 T1, T2와 비교할 때 유의하게(P<0.05) 증가하였다. 생체중에 대한 비율로서 나타낸 면역기관 흉선, F낭의 무게 비율은 T3, T4가 T1, T2에 비해서 유의하게 (P<0.05) 높은 경향을 나타냈다. 장내 유익한 bifidobacteria와 Lactobacillus는 T3, T4가 T1, T2에 비해서 높았으나 유해한 E. coli와 Salmonella는 오히려 낮게 나타났으며 통계적인 유의차(P<0.05)가 인정되었다. 본 연구에서 나타난 중요한 점은 유기축산 사료용 항생제 대체 물질로써 이눌로프리바이오틱스 300ppm 수준을 브로일러 사료에 첨가 급여해 줌으로서 브로일러의 생산성을 크게 향상시킬 수 있다는 사실이었다.

Keywords

References

  1. Bienenstock, J., J. Gauldie and D. Y. E. Perey. 1973. Synthesis of IgG, IgA, IgM by chicken tissues: Immunofluorescent and 14C amino acid incorporation studies. The Journal of Immunology. 111: 1112-1118.
  2. Cetein, N., B. K. Guclu and E. Cetein. 2005. The effect of prebiotics and mannanoligosaccharide on some hematological and immunological parameters in turkey. J. Vet. Med. A. 52: 263-267. https://doi.org/10.1111/j.1439-0442.2005.00736.x
  3. Close, B., K. Banister., V. Baumans., E. M. Bernoth., N. Bromage., J. Bunyan., W. Erhardt., P. Flecknell., N. Gregory., H. Hackbarth., D. Morton and C. Warwick. 1997. Recommendations for euthanasia of experimental animals, Part 2. Laboratory animals 31: 1-32. https://doi.org/10.1258/002367797780600297
  4. Davidson, M. H., K. C. Maki., C. Specks., S. A. Too and K. B. Crennan. 1998. Effects of dietary inulin on serum lipids in men and women with hypercholesterolemia. Nutr. Res. 18: 503-17. https://doi.org/10.1016/S0271-5317(98)00038-4
  5. Devaraj, S., S. Vega-Lopez., N. Kaul., F. Schonlau., P. Rohdewald and I. Jialal. 2002. Supplementation with a pine bark extract rich in polyphenols increases plasma antioxidant capacity and alters the plasma lipoprotein profile. Lipids. 37: 931-934. https://doi.org/10.1007/s11745-006-0982-3
  6. Dibner, J. J. and J. D. Richards. 2005. Antibiotic growth promoters in agriculture: History and mode of action. Poultry Sci. 84: 634-643. https://doi.org/10.1093/ps/84.4.634
  7. Dorotea, L. M. and D. N. M. Maris. 2005. Molecular properties and prebiotic effect of inulinobtained from artichoke (Cynara scolymus L.). Phytochemistry. 66: 1476-1484. https://doi.org/10.1016/j.phytochem.2005.04.003
  8. European Union Commission. 2005. Ban on antibiotics as growth promoters in animal feed enters into effect. 1. Regulation 1831/2003/EC on additives for use in animal nutrition, replacing Directive 70/524/EEC on additives in feed-stuffs, Brussels, 22 December.
  9. Fiordaliso, M. F., N. Kok., J. P. Desager., F. Goethals., D. Deboyser., M. Roberfroid and N. French, A. D. 1989. Chemical and physical properties of fructans. Plant Physiol. 134: 125- 136. https://doi.org/10.1016/S0176-1617(89)80044-6
  10. Gibson, G. R and R. A. Rastall. 2006. Prebiotics: Development and application. John Wiley and Sons, Ltd., USA.
  11. Gibson, G. R. and X. Wang. 1994. Bifidogenic properties of different types of fructooligosaccharides. Food Microbiol. 11: 491-498. https://doi.org/10.1006/fmic.1994.1055
  12. Gibson, G. R., E. R. Bead., X.. Wang and J. H. Cummings. 1995. Selective stimulation of bifidobacteria in the human colon by oligofluctose and inulin. Gastroenterology. 108: 975-982. https://doi.org/10.1016/0016-5085(95)90192-2
  13. Gong, J., R. J. Forster., H. Yu., J. R. Chambers., P. M. Sabour., R. Wheatcroft and S. Chen. 2002. Diversity and phylogenetic analysis of bacteria in the mucosa of chicken ceca and comparison with bacteria in the cecal lumen. FEMS Microbiol. Lett. 208: 1-7. https://doi.org/10.1111/j.1574-6968.2002.tb11051.x
  14. Hernandez, F., J. Madrid., V. Garcia., J. Orengo and M. D. Megias. 2004. Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult. Sci. 83: 169-194. https://doi.org/10.1093/ps/83.2.169
  15. Higgins, D. A. 1975. Physical and chemical properties of fowl immunoglobulins. The Vet. Bull. 45: 139-154.
  16. Hong, B. J., J. S. Oh., B. W. Kim and B. S. Park. 2008. Effect of feeding dietary pitamin as a organic livestock feed additives in laying hens. Korean Association of Organic Agriculture. 16: 205-218.
  17. Kok, N., M. Roberfroid., A. Robert and N. Delzenne. 1996. Involvement of lipogenesis in the lower VLDL secretion induced by oligofructose in rats. Br. J. Nutr. 76: 881-890. https://doi.org/10.1079/BJN19960094
  18. Modler, H. W., R. C. Mckellar and M. Yaguchi. 1990. bifidobacteria and bifidogenic factors. Can. Inst. Food. Sci. Technol. J. 23: 29-41. https://doi.org/10.1016/S0315-5463(90)70197-6
  19. Mockett, A. P. A. and M. E. Rose. 2007. Immune responses to eimeria: quantification of antibody isotypes to Eimeria tenella in chicken serum and bile by means of the ELISA. Parasite Immunology. 8: 481-489. https://doi.org/10.1111/j.1365-3024.1986.tb00863.x
  20. Munoa, F. J. and R. Pares. 1988. Selective medium for isolation and enumeration of bifidobacterium SPP., Applied and Environmental Microbiology. 54: 1715-1718.
  21. National Research Council. 1994. Nutrients requirements of poultry. 9th rev. National Academy Press, Washington DC. USA.
  22. Park, B. S. 2008. Bifidogenic effects of inuloprebiotics in broiler chickens. J. Life. Sci. 18: 1693-1699. https://doi.org/10.5352/JLS.2008.18.12.1693
  23. Patterson, J. A. and K. M. Burkholder. 2003. Application of prebiotics in poultry production. Poult. Sci. 82: 627-631. https://doi.org/10.1093/ps/82.4.627
  24. Rehman, H., P. Hellweg., D. Taras and J. Zentek. 2008. Effects of dietary inulin on the intestinal short chain fatty acids and microbial ecology in broiler chickens as revealed by denaturing gradient gel electrophoresis. Poult. Sci. 87: 783-789. https://doi.org/10.3382/ps.2007-00271
  25. Rada, V., D. Duskova., M. Marounek and J. Petr. 2001. Enrichment of bifidobacteria in the hen caeca by dietary inulin. Folia Microbiol. 46: 73-75. https://doi.org/10.1007/BF02825891
  26. Rolfe, R. D. 2002. The role of probiotic cultures in the control of gastrointestinal health. J. Nutr. 130(2S Suppl.): 396S-402S.
  27. SAS. 2004. SAS/STAT User’s Guide: Statistics. Version 9.1. SAS Institute Inc., Cary, North Carolina. USA.
  28. Savage, T. F., P. F. Cotter and E. I. Zakrzewska. 1996. The effect of feeding of a mannanoligosaccharide on immunoglobulin plasma IgG and bile IgA of Wrolstad MW male turkey. Poult. Sci. 75(Suppl): 143(Abstr).
  29. Scot PIL training manual. 1994. Glasgow Univ. UK.
  30. Tako, E., R. P. Glahn., R. M. Welch., X. Lei., K. Yasuda and D. D. Miller. 2008. Dietary inulin affects the expression of intestinal enterocyte iron transporters, receptors and storage protein and alters the microbiota in the pig intestine. Brit. J. Nutr. 99: 472-480.
  31. Tizard, B. 2002. The avian antibody response. Seminars in avian and exotic pet medicine. 11: 2-14.
  32. Tokunaga, T., T. Oku., and N. Hosoya. 1986. Influence of chronic intake of new weetener fructooligosaccharide(Neosugar) on growth and gastrointestinal function of the rat J. Nutr. Sci. Vitaminol. 32: 111-121. https://doi.org/10.3177/jnsv.32.111
  33. Wang, Y. W., C. J. Field and J. S. Sim. 2000. Dietary polyunsaturated fatty acids alter lymphocyte subset proportion and proliferation, serum immunoglobulin G concentration, and immune tissue development in chicks. Poult. Sci. 79: 1742-1748.
  34. Xu, Z. R., C. H. Hu., M. S. Xia., X. A. Zhan and M. Q. 2003. Effects of dietary fructooligosaccharide on digestive enzyme activies, intestinal microflora and morphology of male broilers. Poult. Sci. 82: 1030-1036. https://doi.org/10.1093/ps/82.6.1030
  35. Xu, Z. R., C. H. Hu and M. O. Wang. 2002. Effects of fructooligosaccharide on conversion of L-tryptophan to skatole and indole by mixed populations of pig fecal bacteria. J. Gen. Appl. Microbiol. 48: 83-89. https://doi.org/10.2323/jgam.48.83
  36. Zhang, W. F., D. F. Li., W. Q. Lu and G. F. Yi. 2003. Effects of isomalto oilgosaccharides on broiler performance and intestinal microflora. Poult. Sci. 82: 657-663. https://doi.org/10.1093/ps/82.4.657