DOI QR코드

DOI QR Code

Control Efficacy of a New Fungicide Fludioxonil on Lettuce Gray Mold According to Several Conditions

발병 조건에 따른 fludioxonil의 상추 잿빛곰팡이병 방제효과

  • Choi, Gyung-Ja (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung-Soo (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong-Ho (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Cheol (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology)
  • 최경자 (한국화학연구원 산업바이오화학연구센터) ;
  • 장경수 (한국화학연구원 산업바이오화학연구센터) ;
  • 최용호 (한국화학연구원 산업바이오화학연구센터) ;
  • 김진철 (한국화학연구원 산업바이오화학연구센터)
  • Published : 2009.12.01

Abstract

Fludioxonil is derived from the antifungal compound pyrrolnitrin produced by Pseudomonas pyrrocinia and classified as a reduced-risk fungicide by the US EPA. The efficacy of fludioxonil for the control of lettuce gray mold caused by Botrytis cinerea was evaluated under several conditions such as growth stages of host, inoculum concentrations, and amounts of potato dextrose broth (PDB) included in spore suspension of B. cinerea. At 4-leaf stage of lettuce plants, fludioxonil applied at 2 ${\mu}g$/ml was more effective for the control of gray mold than at 5- and 6-leaf stages. However, fludioxonil at more than 10 ${\mu}g$/ml provided similar control activity in all growth stages of lettuce tested. The fungicide (10 and 50 ${\mu}g$/ml) also gave excellent control of gray mold on lettuce seedlings inoculated with spore suspensions of B. cinerea ($2.5{\times}10^5$ to $2{\times}10^6$ spores/ml). But, control efficacy of fludioxonil (2 ${\mu}g$/ml) was negatively correlated with inoculum concentration. Addition of PDB in spore suspension of B. cinerea resulted in higher disease severity than non-treated control. By inoculating spore suspension including 0.5% PDB, the fungicide gave the most control activity on the disease, followed by 1% and 2% PDB. The results suggest that fludioxonil has potential to control gray mold of lettuce, but the fungicide at a concentration having moderate activity may represent low control efficacy on the disease under some conditions.

Fludioxonil은 미국 EPA에 의해 저독성(reduced-risk) 살균제로 분류되었으며, 이 살균제는 Pseudomonas pyrrocinia가 생산하는 항균 물질인 pyrrolnitrin을 선도 물질로 하여 합성하였다. 본 연구에서는 상추 품종, 기주 식물의 생육 시기, Botrytis cinerea 포자농도, 접종원의 영양분 농도 등의 발병 조건에 따른 fludioxonil의 상추 잿빛곰팡이병에 대한 방제효과를 온실에서 실험하였다. 상추의 생육시기에 따른 fludioxonil 방제효과를 실험한 결과, 2 ${\mu}g$/ml 처리구는 어린 유묘에서 잿빛곰팡이병 방제효과가 더 높았으나, 10 ${\mu}g$/ml 이상 농도에서는 생육 시기에 따른 방제효과의 차이는 거의 없었다. 또한 fludioxonil 10 ${\mu}g$/ml 이상 농도 처리구는 B. cinerea의 포자 농도(2.5$\times$10개/ml 부터 $2{\times}10^6$ 개/ml까지)에 관계없이 모두 우수한 방제효과를 나타냈다. 반면에 fludioxonil 2 ${\mu}g$/ml은 접종원의 포자농도가 높을수록 낮은 방제효과를 보였다. 그리고 영양분농도에 따른 fludioxonil의 잿빛곰팡이병 방제효과를 실험한 결과, potato dextrose broth의 농도가 낮을수록 fludioxonil은 상추 잿빛곰팡이병에 대한 높은 방제효과를 나타냈다. 이상의 결과로부터 살균제 fludioxonil은 상추 잿빛곰팡이병에 대한 효과적인 살균제임을 알 수 있었으며, 다만 낮은 농도에서는 발병 조건에 따라 다소 낮은 방제효과를 나타낼 수 있을 것이다.

Keywords

References

  1. 김흥태, 정영륜, 조광연. 1991. 오이 탄저병에 대한 bennomyl의 억제효과에 영향을 미치는 요인. 한국식물병리학회지 7: 153-158
  2. 박효근 등 20인. 2008. 한국채소종자산업발달사. 서울대학교 출판부. 607 pp
  3. 손지희, 이재필, 김철승, 임은경, 송주희, 김현주, 박현철, 문병주. 2001. 토마토쥬스와 KH2PO4가 Botrytis cinerea LVF12 분생포자의 토마토 감염에 미치는 영향. 식물병연구 7: 134-139
  4. Bennett, M. H., Gallagher, M. D. S., Bestwick, C. S., Rossiter, J. T. and Mansfield, J. W. 1994. The phytoalexin response of lettuce to challenge by Botrytis cinerea, Bremia lactucae and Pseudomonas syringae pv. phaseolicola. Physiol. Mol. Plant Pathol. 44: 321-333 https://doi.org/10.1016/S0885-5765(05)80046-3
  5. Bestwick, L., Bennett, N. H., Mansfield, J. W. and Rossiter, J. T. 1995. Accumulation of the phytoalexin lettucenin A and changes in 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in lettuce seedlings with red spot disorder. Phytochemistry 39: 775-777 https://doi.org/10.1016/0031-9422(95)00089-P
  6. De Curtis, F., Torriani, S., Rossi, E. and De Cicco, V. 1996. Selection and use of Metschnikowia pulcherrima as a biological control agent for postharvest rots of peaches and table grapes. Ann. Microbiol. Enzimol. 46: 45-55
  7. Errampalli, D. 2004. Effect of fludioxonil on germination and growth of Penicillium expansum and decay in apple cvs. Empire and Gala. Crop Prot. 23: 811-817 https://doi.org/10.1016/j.cropro.2003.12.010
  8. Errampalli, D., Northover, J., Skog, L. and Brubacher, N. R. 2005. Control of blue mold (Penicillium expansum) by fludioxonil in apples (cv Empire) under controlled atmosphere and cold storage conditions. Pest Manag. Sci. 61: 591-596 https://doi.org/10.1002/ps.1010
  9. Environmental Protection Agency (EPA). 1998. General overview: reduced-risk pesticide program. Environ, Prot. Agency Off. Pestic. Programs, Staff Background. Paper 2-4
  10. Forster, H., Driever, G. F., Thompson, D. C. and Adaskaveg, J. E. 2007. Postharvest decay management for stone fruit crops in California using the 'reduced-risk' fungicides fludioxonil and fenheximid. Plant Dis. 91: 209-215 https://doi.org/10.1094/PDIS-91-2-0209
  11. Gullino, M. L. and Garibaldi, A. 1986. Fungicide resistance monitoring as an aid to tomato grey mould management. Proc. Br. Crop Prot. Conf. 2: 499-505
  12. Hoffland, E., van Beusichem, M. L. and Jeger, M. J. 1999. Nitrogen availability and susceptibility of tomato leaves to Botrytis cinerea. Plant and Soil 210: 263-272 https://doi.org/10.1023/A:1004661913224
  13. Kim, B. S., Choi, G. J. and Cho, K. Y. 1993. Responses to several fungicides of Botrytis cinerea isolates resistant to benzimidazole and dicarboximide fungicides. Kor. J. Plant Pathol. 9: 104-111
  14. Moorman, G. W. and Lease, R. T. 1992. Benzimidazole- and dicarboximide-resistant Botrytis cinerea from Pennsylvania greenhouses. Plant Dis. 76: 477-480
  15. Mueller, D. S., Bradley, C. A., Grau, C. R., Gaska, J. M., Kurle, J. E. and Pedersen, W. L. 2004. Application of thiophanatemethyl at different host growth stages for management of sclerotinia stem rot in soybean. Crop Prot. 23: 983-988 https://doi.org/10.1016/j.cropro.2004.02.013
  16. Rosslenbroich, H.-J. and Stuebler, D. 2000. Botrytis cinereahistory of chemical control and novel fungicides for its management. Crop Prot. 19: 557-561 https://doi.org/10.1016/S0261-2194(00)00072-7
  17. Staub, T. and Diriwaechter, G. 1986. Status and handling of fungicide resistance in pathogens of grapevine. Proc. Br. Crop Prot. Conf. 2: 771-780
  18. Takasugi, M., Okinaka, S., Katsui, N., Masamune, T., Shirata, A. and Ohuchi, M. 1985. Isolation and structure of lettucenin A a novel guaianolide phytoalexin from Lactuca sativa var. capitula (Compositae). Chem. Commun. 10: 621-622
  19. Zhang, J. 2007. The potential of a new fungicide fludioxonil for stem-end rot and green mold control on Florida citrus fruit. Postharvest Biol. Technol. 46: 262-270 https://doi.org/10.1016/j.postharvbio.2007.05.016

Cited by

  1. Control of Botrytis cinerea and Postharvest Quality of Cut Roses by Electron Beam Irradiation vol.32, pp.4, 2014, https://doi.org/10.7235/hort.2014.14021
  2. Selection of KYC 3270, a Cellulolytic Myxobacteria of Sorangium cellulosum, against Several Phytopathogens and a Potential Biocontrol Agent against Gray Mold in Stored Fruit vol.27, pp.3, 2011, https://doi.org/10.5423/PPJ.2011.27.3.257
  3. Control Efficacy of Fungicides on Chinese Cabbage Clubroot under Several Conditions vol.17, pp.2, 2011, https://doi.org/10.5423/RPD.2011.17.2.155