DOI QR코드

DOI QR Code

Suppression Effect of Gray Mold and Late Blight on Tomato Plants by Rhamnolipid B

Rhamnolipid B에 의한 토마토 잿빛곰팡이병과 역병의 억제효과

  • Ahn, Ji-Ye (Department of Agronomy, Chungnam National University) ;
  • Park, Myung-Soo (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Kim, Seul-Ki (Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Choi, Gyung-Ja (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung-Soo (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong-Ho (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology) ;
  • Choi, Jae-Eul (Department of Agronomy, Chungnam National University) ;
  • Kim, In-Seon (Department of Agricultural Chemistry, College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Jin-Cheol (Chemical Biotechnology Research Center, Korea Research Institute of Chemical Technology)
  • 안지예 (충남대학교 농학과) ;
  • 박명수 (한국화학연구원 산업바이오화학연구센터) ;
  • 김슬기 (전남대학교 농화학과) ;
  • 최경자 (한국화학연구원 산업바이오화학연구센터) ;
  • 장경수 (한국화학연구원 산업바이오화학연구센터) ;
  • 최용호 (한국화학연구원 산업바이오화학연구센터) ;
  • 최재을 (충남대학교 농학과) ;
  • 김인선 (전남대학교 농화학과) ;
  • 김진철 (한국화학연구원 산업바이오화학연구센터)
  • Published : 2009.12.01

Abstract

A Pseudomonas strain SG3 producing biosurfactant and showing antifungal and insecticidal activities was isolated from agricultural soil severely contaminated with machine oils. The antagonistic bacterium inhibited mycelial growth of all of the tested fungal pathogens. The fermentation broth of SG3 also effectively suppressed the development of various plant diseases including rice blast, tomato gray mold, tomato late blight, wheat leaf rust, barley powdery mildew and red pepper anthracnose. An antifungal substance was isolated from the fermentation broth of SG3 by ethyl acetate partitioning, silica gel column chromatography and preparative HPLC under the guide of bioassay. The chemical structure of the antifungal substance was determined to be rhamnolipid B by mass and NMR spectral analyses. The antifungal biosurfactant showed a potent in vivo antifungal activity against gray mold and late blight on tomato plants. In addition, rhamnolipid B inhibited mycelial growth of B. cinerea causing tomato gray mold and zoospore germination and mycelial growth of P. infestans causing tomato late blight. Pseudomonas sp. SG3 producing rhamnolipid B could be used as a new biocontrol agent for the control of plant diseases occurring on tomato plants.

기계유가 심하게 오염된 토양으로부터 생물계면활성제를 생산하고 항균활성과 살충활성을 보이는 Pseudomonas sp. SG3 균주를 분리하였다. 이 길항세균은 시험한 8개의 식물병원곰팡이 모두에 대하여 균사생육저해활성을 보였다. 또한 in vivo assay에서는 SG3 액체 배양액 처리시 벼도열병, 토마토 잿빛곰팡이병, 토마토 역병, 밀 붉은녹병, 보리 흰가루병 및 고추 탄저병에 강한 항균 효과를 보였다. 액체배양액으로부터 ethyl acetate 추출, silica gel column chromatography 및 preparative HPLC 등을 통하여 한 개의 항균물질을 분리하였다. 질량분석과 핵자기공명분석을 통해 분리한 물질의 구조를 동정한 결과 rhamnolipid B로 동정되었다. Rhamnolipid B는 토마토 잿빛곰팡이병과 토마토 역병에 높은 방제활성을 보였다. 그리고 토마토 잿빛곰팡이병균인 B. cinerea의 균사 생장과 토마토 역병균인 P. infestans의 유주자 발아 및 균사 생장을 효과적으로 억제하였다. Rhamnolipid B를 생산하는 Pseudomonas sp. SG3는 토마토에서 발생하는 식물병을 방제하는 새로운 생물방제제로서 이용이 가능할 것으로 기대된다.

Keywords

References

  1. Chin-A-Woeng, T. F. C., Bloemberg, G. V., van der Bij, A. J., van der Drift, K. M. G. M., Schripsema, J., Kroon, B., Scheffer, R. J., Keel, C., Bakker, P. A. H. M., Tichy, H.-V., de Bruijn, F. J., Thomas-Oates, J. E. and Lugtenberg, B. J. J. 1998. Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol. Plant-Microbe Interact. 11: 1069-1077 https://doi.org/10.1094/MPMI.1998.11.11.1069
  2. Handelsman, J. and Parke, J. L. 1989. Mechanisms in biocontrol of soilborne plant pathogens, In: Plant-microbe interactions, Vol. 3, ed. By T. Kosuge and E. W. Nebster, pp. 27-61. McGraw-Hill Publishing Co., New York
  3. Howell, C. R. and Stipanovic, R. D. 1979. Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens and with an antibiotic produced by the bacterium. Phytopathology 69: 480-482 https://doi.org/10.1094/Phyto-69-480
  4. Howell, C. R. and Stipanovic, R. D. 1980. Suppression of Pythium ultimum-induced damping-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70: 712-715 https://doi.org/10.1094/Phyto-70-712
  5. James, C. 1971. A Manual of Assessment Keys for Plant Disease. Canadian Department of Agriculture Publishing
  6. Jarvis, F. G. and John, M. J. 1949. A glycol-lipid produced by Pseudomonas aeruginosa. J. Am. Chem. Soc. 71: 4124-4126 https://doi.org/10.1021/ja01180a073
  7. Kamilova, F., Validov, S., Azarova, T., Mulders, I. and Lugtenberg, B. 2005. Enrichment for enhanced competitive plant root tip colonizers selects for a new class of biocontrol bacteria. Environ. Microbiol. 7: 1809-1817 https://doi.org/10.1111/j.1462-2920.2005.00889.x
  8. Kim, B. S., Lee, J. Y. and Hwang, B. K. 2000. In vivo and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag. Sci. 56: 1029-1035 https://doi.org/10.1002/1526-4998(200012)56:12<1029::AID-PS238>3.0.CO;2-Q
  9. 김충회. 2004. 2003년 농작물 병해 발생개황. 식물병연구 10: 1-7 https://doi.org/10.5423/RPD.2004.10.1.001
  10. Lang, S. and Wullbrandt, D. 1999. Rhamnose lipids - biosysthesis, microbial production and application potential. Appl. Microbiol. Biotechnol. 51: 22-32 https://doi.org/10.1007/s002530051358
  11. Maier, R. M. and Soberon-Chavez, G. 2000. Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential application. Appl. Microbiol. Biotechnol. 51: 625-633
  12. Mulligan, C. N. 2005. Environmental applications for biosurfactants. Environ. Pollut. 133: 183-198 https://doi.org/10.1016/j.envpol.2004.06.009
  13. 농림부. 2007. 농림통계연보. 농림수산식품부
  14. Stanghellini, M. E. and Miller, R. M. 1997. Biosurfactants: their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis. 81: 4-12 https://doi.org/10.1094/PDIS.1997.81.1.4
  15. Thomashow, L. S. and Weller, D. M. 1996. Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites., pp. 236-271. In: G. Stacey and N. T. Keen (eds.), Plant-Microbe interactions. Chapman and Hall, New York
  16. Thomashow, L. S., Bonsall, R. F. and Weller, D. M. 1997. Antibiotic production by soil and rhizosphere microbes in situ, pp. 493-500. In C. J. Hurst (ed.), Manual of environmental microbiology. ASM Press, Washington, D.C
  17. Weller, D. M. and Thomashow, L. S. 1993. Use of rhizobacteria for biocontrol. Curr. Opin. Biotechnol. 4: 306-311 https://doi.org/10.1016/0958-1669(93)90100-B
  18. Yamaguchi, M., Sato, A. and Yukuyama, A. 1976. Microbial production of sugar-lipids. Chem. Ind. 4: 741-742

Cited by

  1. Control of Pepper Anthracnose Caused by Colletotrichum acutatum using Alternate Application of Agricultural Organic Materials and Iminoctadine tris + thiram vol.19, pp.4, 2015, https://doi.org/10.7585/kjps.2015.19.4.428
  2. Identification of Orfamide A as an Insecticidal Metabolite Produced by Pseudomonas protegens F6 vol.61, pp.28, 2013, https://doi.org/10.1021/jf401218w