Estimation of the Surface Currents using Mean Dynamic Topography and Satellite Altimeter Data in the East Sea

평균역학고도장과 인공위성고도계 자료를 이용한 동해 표층해류 추산

  • Lee, Sang-Hyun (Ocean Research Division, Korea Hydrographic and Oceanographic Administration) ;
  • Byun, Do-Seong (Ocean Research Division, Korea Hydrographic and Oceanographic Administration) ;
  • Choi, Byoung-Ju (Department of Oceanography, Kunsan National University) ;
  • Lee, Eun-Il (Ocean Research Division, Korea Hydrographic and Oceanographic Administration)
  • 이상현 (국립해양조사원 해양조사연구실) ;
  • 변도성 (국립해양조사원 해양조사연구실) ;
  • 최병주 (군산대학교 해양학과) ;
  • 이은일 (국립해양조사원 해양조사연구실)
  • Published : 2009.11.30

Abstract

In order to estimate sea surface current fields in the East Sea, we examined characteristics of mean dynamic topography (MDT) fields (or mean surface current field, MSC) generated from three different methods. This preliminary investigation evaluates the accuracy of surface currents estimated from satellite-derived sea level anomaly (SLA) data and three MDT fields in the East Sea. AVISO (Archiving, Validation and Interpretation of Satellite Oceanographic data) provides a MDT field derived from satellite observation and numerical models with $0.25^{\circ}$ horizontal resolution. Steric height field relative to 500 dbar from temperature and salinity profiles in the East Sea supplies another MDT field. Trajectory data of surface drifters (ARGOS) in the East Sea for 14 years provide another MSC field. Absolute dynamic topography (ADT) field is calculated by adding SLA to each MDT. Application of geostrophic equation to three different ADT fields yields three surface geostrophic current fields. Comparisons were made between the estimated surface currents from the three different methods and in-situ current measurements from a ship-mounted ADCP (Acoustic Doppler Current Profiler) in the southwestern East Sea in 2005. For offshore areas more than 50 km away from the land, the correlation coefficients (R) between the estimated versus the measured currents range from 0.58 to 0.73, with 17.1 to $21.7\;cm\;s^{-1}$ root mean square deviation (RMSD). For coastal ocean within 50 km from the land, however, R ranges from 0.06 to 0.46 and RMSD ranges from 15.5 to $28.0\;cm\;s^{-1}$. Results from this study reveal that a new approach in producing MDT and SLA is required to improve the accuracy of surface current estimations for the shallow costal zones of the East Sea.

인공위성 고도계로 측정한 해수면 높이 자료를 사용하여 준 실시간 동해 표층해류를 추정하기 위해, 세 가지 방법으로 평균 역학지형(또는 평균 해류장)을 계산하고 각각의 특징들을 살펴보았다. 프랑스 AVISO(Archiviing, Validation and Interpretation of Satellite Oceanographic data)는 인공위성 고도계 자료와 수치모델을 이용하여 전 지구 해양에 대하여 수평적으로 $0.25^{\circ}$의 해상도를 갖는 평균 역학지형을 계산하고 지형류 방정식을 적용하여 평균 해류장을 만들어 제공하고 있다. 동해에서 장기간 관측한 수온과 염분 자료를 사용하여 500 dbar를 기준면으로 사용한 역학적 해면(steric height)을 계산하고 이를 평균 여각지형으로 환산하였다. 또한 14년 동안 동행의 표층을 이동한 표층뜰개들(ARGOS)의 궤적을 이용하여 평균 해류장을 구하였다. 인공위성 고도계로 관측한 해수면 편차와 세 가지 평균 역학지형을 합하여 절대 역학지형을 얻고, 각각의 절대 역학지형에 지형류 방정식을 적용하여 세 가지 표층해류를 추정하였다. 각 방법으로 추정된 표층해류를 2005년에 동해 남서부 해역에서 선박장착 초음파 해류계(ADCP)로 관측한 해류 자료와 정량적으로 비교하였다. 육지에서 50 km 이상 떨어진 해역에서는 인공위성 고도계로 측정한 해수면 자료에 지형류 방정식을 적용하여 구한 표층해류와 현장 관측 해류의 상관계수(R)가 0.58~0.73이며 두 자료의 제곱 평균 제곱근 편차(Root Mean Square Deviation, RMSD)는 $17.1{\sim}21.8cm\;s^{-1}$이다. 육지에서 50 km 이내의 연안에서 두자료의 R이 0.06~0.46로 상대적으로 낮고 RMSD는 $15.5{\sim}28.0cm\;s^{-1}$이다. 이처럼 연안에서는 인공위성 고도계로 관측한 해수면 높이 자료의 오차가 크므로 향후 연안에 대해서는 새로운 표층해류 추정 방법에 대한 추가 연구가 필요하다.

Keywords

References

  1. 국립해양조사원, 2003. 실시간 해류모니터링 시스템 구축 결과보고서, 44 pp
  2. 윤홍주, 서영상, 2003. 복합위성자료(Topex/Poseidon, ERS1)를 이용한 남인도양의 해수면 변화와 와동류 연구. Korean J. Remote Sensing, 19(4): 271-276 https://doi.org/10.7780/kjrs.2003.19.4.271
  3. Boebel, O. and C. Barron, 2003. A comparison of in-situ tloat velocities with altimeter derived geostrophic velocities. Deep-Sea Res.(II Top. Stud. Oceanogr.) 50: 119-139 https://doi.org/10.1016/S0967-0645(02)00381-8
  4. Chang, K.I., W.J. Teague, S.J. Lyu, H.T. Perkins, D.K. Lee, D.R. Watts, Y.-B. Kim, D.A. Mitchell C.M. Lee and K. Kim, 2004. Circulation and currents in the southwestem East/Japan Sea. Overview and review. Prog. Oceanogr., 61: 105-156 https://doi.org/10.1016/j.pocean.2004.06.005
  5. Choi, B.J., D.B. Haidvogel and Y.K. Cho, 2004. Nonseasonal sea level variations in the Japan!East Sea from satellite altimeter data. J. Geophys. Res., 109:C12028, doi: 10.1029/2004JC002387
  6. Chu, P.C., J. Lan and C. Fan., 2001a. Japan Sea thermohaline structure and circulation. Part I: Climatology, J. Phys. Oceanogr., 31:244-271 https://doi.org/10.1175/1520-0485(2001)031<0244:JSTSAC>2.0.CO;2
  7. Chu, P.C., J. Lan and C. Fan, 2001b. Japan Sea thermohaline structure and circulation. Part II: A variational P-vector method. J. Phys. Oceanogr., 31: 2886-2902 https://doi.org/10.1175/1520-0485(2001)031<2886:JSTSAC>2.0.CO;2
  8. Danchenkov M.A., V.B. Lobanov, S.C. Riser, K. Kim, M. Takematsu and J.-H. Yoon, 2006. A History of Physical Oceanographic Research in the Japan/East Sea. Oceanogr. 19(3): 18-31 https://doi.org/10.5670/oceanog.2006.41
  9. Ducet, N., P.Y. Le Traon and G. Reverdin, 2000. Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2, J. Geophys. Res., 105(C8): 19,477-19,498 https://doi.org/10.1029/2000JC900063
  10. Ekman, V.W., 1905. On the intluence ofthe Earth's rotatton on ocean currents. Ark. Mat. Fys., 2: 1-53
  11. Hase, H., J.-H. Yoon and W. Koterayama, 1999. The current structure of the Tsushima Current along the Japanese coast. J. Oceanogr., 55: 217-235 https://doi.org/10.1023/A:1007894030095
  12. Hemandez, F. and P. Schaeffer, 2000: Altimetric Mean Sea Surfaces and Gravity Anomaly maps inter-comparisons. Rapport AVI-NT-011-5242-CLS, CLS Ramonville St Agne. pp. 48
  13. Lagerloef, G.S.E., G.T. Mitchum, R.B. Lukas and P.P. Niiler, 1999. Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data. J. Geophys. Res., 104(23): 23,313-23,326 https://doi.org/10.1029/1999JC900197
  14. Lee D.-K. and P.P. Niiler, 2005. The energetic surface circulation patterns of the Japan/East Sea. Deep-Sea Res. II, 52: 1547-1563 https://doi.org/10.1016/j.dsr2.2003.08.008
  15. Lin, X.-H., L.-Y. Oey and D.-P. Wang, 2007. Altimetry and drifter data assimilations of loop current and eddies, J. Geophys. Res., 112, C05046, doi:10.1029/2006JC003779
  16. Madsen, K.S., J.L. Hoyer and C.C. Tscheming, 2007. Near-coastal satellite altimetry: Sea surface height variability in the North Sea-Baltic Sea area, Geophys. Res. Lett., 34, L14601. 1, doi: 10.1029/2007GL029965
  17. Mitchell, D.A., D.R. Watts, M. Wimbush, W.J. Teague, K.L. Tracey, J.W. Book, K.-I. Chang, M.-S. Suk and J.-H. Yoon, 2005. Upper circulation pattems in the Ulleung Basin. Deep-Sea Res. 52:1617-1638
  18. Morimoto, A., T. Yanagi and A. Kaneko, 2000. Tidal cprrection of altimetric data in the Japan Sea. J. Oceanogr., 56:31-41 https://doi.org/10.1023/A:1011158423557
  19. Mooers, C.N.K., H.-S. Kang, I.Bang and D.P.Snowden, 2006. Some lessons learned from comparisons of numerical simulations and observations of the JES circulation. Oceanogr., 19(3):86-95
  20. Nam, S.H., S.J. Lyn, Y.H. Kim, K. Kim, J.-H. Park and D.R. Watts, 2004. Correction of TOPEX/POSEIDON altimeter data for noni-sostatic sea level response to atmospheric pressure in the Japan/East Sea. Geophys. Res. Lett., 31(2):L02304 https://doi.org/10.1029/2003GL018487
  21. Pascual, A., Y. Faugere, G. Larnicol and P.-Y. Le Traan, 2006. Improved description of the ocean mesoscale variability by combining four satelite altimeters, Geophys. Res. Lett., 33, L02611, doi:10.1029/2005GL024633
  22. Pascual, A., M.I. Pujol, G Larnicol, P.Y. Le Traon and M.H. Rio, 2007. Mesoscale mapping capabilities of multisatellite a1timeter missions: First results with real data in the Mediterranean Sea. J. Marine Systems, 65: 190-211 https://doi.org/10.1016/j.jmarsys.2004.12.004
  23. Rio, M.-H. and F. Hernandez, 2003. High-frequency response of wind-driven currents measured by drifting buoys and altimeσy over the world ocean, J. Geophys. Res., 108(C8): 3283, doi: 10.1029/2002JC001655
  24. Rio, M.-H. and F. Hernandez, 2004. A mean dynamic topography computed over the world ocean from altimetry, in situ measurements, and a geoid model. J. Geophys. Res., 109, C12032, doi:10.1029/2003JC002226
  25. Santos, A.M. 2000. Fisheries oceanography using satellite and airborne remote sensing methods: a review, Fish. Res., 49: 1-20 https://doi.org/10.1016/S0165-7836(00)00201-0
  26. Saraceno, M., P.T. Strub and P.M. Kosro, 2008. Estimates of sea surface height and near surface alongshore coastal currents from combinations of altimeters and tide gauges. J. Geophys. Res., 113, C11013, doi:10.1029/2008JC004756
  27. Schreiner, W.S., R.E. Markin and G.H. Born, 1997. Correction of single-frequency altimeter measurements for ionosphere delay. IEEE Transactions on Geoscience and Remote Sensing, 35(2):271-277 https://doi.org/10.1109/36.563266
  28. Siegismund, F., J. Johannessen, H. Drange, K.A. Mork and A. Korablev, 2007. Steric height variability in the Nordic Seas, J. Geophys. Res., 112, C12010, doi:10.1029/2007JC004221
  29. Strub, P.T., T.K. Chereskin, P.P. Niiler, C. James and M.D. Levine, 1997. Altimeter-derived variability of surface velocities in the Califomia Current System 1. Evaluation of TOPEX altimeter velocity resolution, J. Geophys. Res., 102(C6): 12,727-12,748 https://doi.org/10.1029/97JC00448
  30. Uchida, H., S. lmawaki and J.-H. Hu, 1998. Comparison of Kuroshio surface velocities derived from satellite a1timetry and drifting buoy data. Journ. of Oceanogr., 54: 1152000122 https://doi.org/10.1007/BF02744385
  31. Vìgnudelli, S., P. Cipollini and L. Roblou, 2005. Improved satellite altimetry in coastal systems: Case study of the Corsica Channel (Mediterranean Sea), Geophys. Res. Lett., 32 (7): L07608, doi:10.1029/2005GL022602