Biotechnology for the Mitigation of Methane Emission from Landfills

매립지의 메탄 배출 저감을 위한 생물공학기술

  • Cho, Kyung-Suk (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Ryu, Hee-Wook (Department of Chemical and Environmental Engineering, Soongsil University)
  • 조경숙 (이화여자대학교 환경공학과) ;
  • 류희욱 (숭실대학교 환경화학공학과)
  • Published : 2009.12.28

Abstract

Methane, as a greenhouse gas, is some 21~25 times more detrimental to the environmental than carbon dioxide. Landfills generally constitute the most important anthropogenic source, and methane emission from landfill was estimated as 35~73 Tg per year. Biological approaches using biocover (open system) and biofilter (closed system) can be a promising solution for older and/or smaller landfills where the methane production is too low for energy recovery or flaring and installation of a gas extraction system is inefficient. Methanotrophic bacteria, utilizing methane as a sole carbon and energy source, are responsible for the aerobic degradation (oxidation) of methane in the biological systems. Many bench-scale studies have demonstrated a high oxidation capacity in diverse filter bed materials such as soil, compost, earthworm cast and etc. Compost had been most often employed in the biological systems, and the methane oxidation rates in compost biocovers/boifilters ranged from 50 to $700\;g-CH_4\;m^{-2}\;d^{-1}$. Some preliminary field trials have showed the suitability of biocovers/biofilters for practical application and their satisfactory performance in mitigation methane emissions. Since the reduction of landfill methane emissions has been linked to carbon credits and trading schemes, the verified quantification of mitigated emissions through biocovers/biofilters is very important. Therefore, the assessment of in situ biocovers/biofilters performance should be standardized, and the reliable quantification methods of methane reduction is necessary.

메탄은 온실효과가 이산화탄소 보다 20배 이상인 대표적인 non-$CO_2$ 온실가스이다. 매립지는 주요 인위적 메탄 발생원으로, 매립지의 메탄 발생량은 연간 35~73 Tg(tera gram)으로 추정된다. 바이오커버(개방형 시스템)과 바이오필터(폐쇄형 시스템)을 이용하는 생물학적 방법은 메탄을 회수하여 자원화하기에는 메탄 농도가 너무 낮거나 가스 포집정이 설치되어 있지 않는 노후화된 매립지나 소규모 매립지로부터 메탄 배출을 저감할 수 있는 유용한 방법이다. 메탄을 유일탄소원과 에너지원으로 활용하는 메탄산화세균은 이러한 생물학적 방법에 있어 메탄을 산화시켜 제거하는데 매우 중요한 역할을 담당한다. 토양, compost, 지렁이 분변토 등과 같은 다양한 충전재를 이용하여 실험실 규모의 바이오커버/바이오필터의 메탄산화효율에 관한 많은 연구가 진행되었다. 이 중에서 compost는 가장 많이 이용되고 있는 충전재이고, compost를 이용한 바이오커버/바이오필터의 메탄산화속도는 50에서 $700\;g-CH_4\;m^{-2}\;d^{-1}$로 보고되고 있다. 또한, 실제 매립지에 파일럿 규모의 바이오커버/바이오필터를 설치하여 메탄 배출 저감 효과에 관한 연구도 진행되고 있다. 매립지의 메탄 배출 저감은 탄소배출권 거래와 연관될 수 있으므로, 바이오커버/바이오필터에 의한 메탄 저감량을 정확하게 평가하는 것이 매우 중요하다. 그러므로, 매립지 현장에 설치된 바이오커버/바이오필터의 성능을 평가하는 방법은 표준화되어야 하며, 메탄 저감량을 정확하게 정량화할 수 있는 방법 개발이 필요하다.

Keywords

References

  1. Abichou, T., K. Mahieu, L. Yuan, J. Chanton, and G. Hater. 2009. Effects of compost biocovers on gas flow and methane oxidation in a landfill cover. Waste Manag. 29: 1595-1601 https://doi.org/10.1016/j.wasman.2008.11.007
  2. Auman, A. J. and M. E. Lidstrom. 2002. Analysis of sMMO containing type I methanotrophs in Lake Washington sediment. Environ. Microbiol. 4: 517-524 https://doi.org/10.1046/j.1462-2920.2002.00323.x
  3. Ayalon, O., Y. Avnimelech, and M. Shechter. 2001. Solid waste treatment as a high-priority and low-cost alternative for greenhouse gas mitigation. Environ. Manag. 27: 697-704 https://doi.org/10.1007/s002670010180
  4. Aye, L. and E. R. Widjaya. 2006. Environmental and economic analyses of waste disposal options for traditional markets in Indonesia. Waste Manag. 26:1180-1191 https://doi.org/10.1016/j.wasman.2005.09.010
  5. Bajic, Z. and C. Zeiss. 2001. Methane oxidation in alternative landfill cover soils. Proceedings from the 24th Annual Landfill Gas Symposium, Dallas, USA
  6. Bender, M. and R. Conrad. 1995. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Bio. Biochem. 27: 1517-1527 https://doi.org/10.1016/0038-0717(95)00104-M
  7. Berger, J., L. V. Fornes, C. Ott, J. Jager, B. Wawra, and U. Zanke. 2005. Methane oxidation in a landfill cover with capillary barrier. Waste Manag. 25: 369-373 https://doi.org/10.1016/j.wasman.2005.02.005
  8. Bodrossy, L., N. Stralis-Pavese, M. Konrad-Koszler, A. Weilharter, T. G. A. Reichenauer, D. Schofer, and A. Sessitsch. 2006. mRNA-based parallel detection of active methanotroph populations by use of a diagnostic microarray. Appl. Environ. Microbiol. 72: 1672-1676 https://doi.org/10.1128/AEM.72.2.1672-1676.2006
  9. Boeckx, P. and O. Van Cleemput. 1996. Methane oxidation in a neutral landfill cover soil-influence of moisture content, temperature, and nitrogen-turnover. J. Environ. Qual. 25: 178-183 https://doi.org/10.2134/jeq1996.251178x
  10. Bogner, J., K. Spokas, J. Chanton, D. Powelson, and T. Abichou. 2005. Modeling landfill methane emissions from biocovers, a combined theoretical-empirical approach. Proceedings 10th International Waste Management and Landfill Symposium, Sardinia, Italy
  11. Bogner, J., M. Meadows, and P. Czepiel. 1997. Fluxes of methane between landfills and the atmosphere: natural and engineered controls. Soil Use Manag. 13: 268-277 https://doi.org/10.1111/j.1475-2743.1997.tb00598.x
  12. Brosseau, J. and M. Heitz. 1996. Trace gas compound emissions from municipal landfill sanitary sites. Atmos. Environ. 28: 285-293 https://doi.org/10.1016/1352-2310(94)90103-1
  13. Caldwell, S., J. R. Laidler, E. A. Brewer, J. O. Eberly, S. C. Sandborgh, and F. S. Colwell. 2008. Anaerobic oxidation of methane: mechanisms, bioenergetics, and the ecology of associated microorganisms. Environ. Sci. Technol. 42: 6791-6799 https://doi.org/10.1021/es800120b
  14. Cao, M., K. Gregson, and S. Marshall. 1998. Global methane emission from wetlands and its sensitivity to climate change. Atmos. Environ. 32: 3293-3299 https://doi.org/10.1016/S1352-2310(98)00105-8
  15. Christophersen, M. and P. Kjeldsen. 2001. Lateral gas transport in soil adjacent to an old landfill: factors governing gas migration. Waste Manag. Res. 19: 579-594 https://doi.org/10.1177/0734242X0101900615
  16. Christophersen, M., L. Linderod, P. E. Jensen, and P. Kjeldsen. 2000. Methane oxidation at low temperature in soil exposed to landfill gas. J. Environ. Qual. 29: 1989-1977 https://doi.org/10.2134/jeq2000.2961989x
  17. De Visscher, A., D. Thomas, P. Boeckx, and O. Van Cleemput. 1999. Methane oxidation in simulated landfill cover soil environments. Environ. Sci. Technol. 33: 1854-1859 https://doi.org/10.1021/es9900961
  18. Du Plessis, C. A., J. M. Strauss, E. M. T. Sebapalo, and K. H. J. Riedel. 2003. Empirical model for methane oxidation using a composted pine bark biofilter. Fuel 82: 1359-1365 https://doi.org/10.1016/S0016-2361(03)00040-1
  19. Einola J., K. Sormunen, A. Lensu, A. Leiskallio, M. Ettala, and J. Rintala. 2009. Methane oxidation at a surface-sealed boreal landfill. Waste Manag. doi:10.1016/j.wasman.2009. 01.007
  20. Einola, J.-K. M., K. M. Sormunen, and J. A. Rintala. 2008. Methane oxidation in a boreal climate in an experimental landfill cover composed from mechanically-biologically treated waste. Sci. Tot. Environ. 407: 67-83 https://doi.org/10.1016/j.scitotenv.2008.08.016
  21. Fung, I., J. John, J. Lerner, E. Matthews, M. Prather, L. P. Steele L. P., and P. J. Fraser. 1991. Three-dimensional model synthesis of the global methane cycle. J. Geophys. Res. 96: 13033-13065 https://doi.org/10.1029/91JD01247
  22. Gebert, J. and A. Grongroft. Performance of a passively vented field-scale biofilter for the microbial oxidation of landfill methane. Waste Manag. 26: 399-407 https://doi.org/10.1016/j.wasman.2005.11.007
  23. Gebert, J., A. Groengroeft, and G. Miehlich. 2003. Kinetics of microbial landfill methane oxidation in biofilter. Waste Manag. 23: 609-619 https://doi.org/10.1016/S0956-053X(03)00105-3
  24. Gebert, J., N. Stralis-Pavese, M. Alawi, and L. Bodrossy. 2008. Analysis of methanotrophic communities in landfill biofilters using diagnostic microarray. Environ. Microbiol. 10: 1175-1188 https://doi.org/10.1111/j.1462-2920.2007.01534.x
  25. Hanson, R. S. and T. E. Hanson. 1996. Methanotrophic bacteria. Microbiological Rev. 60: 439–471
  26. Haubrichs, R. and R. Widmann. 2006. Evaluation of aerated biofilter systems for microbial methane oxidation of poor landfill gas. Waste Manag. 26: 408-416 https://doi.org/10.1016/j.wasman.2005.11.008
  27. He, R., A. Ruan, C. Jiang, and D. S. Shen. 2008. Responses of oxidation rate and microbial communities to methane in simulated landfill cover soil microcosms. Biores. Technol. 99: 7192-7199 https://doi.org/10.1016/j.biortech.2007.12.066
  28. Hein, R., P. J. Crutzen, and M. Heinmann. 1997. An inverse modeling approach to investigate the global atmospheric methane cycle. Global Biogeochem. Cycles 11: 43-76 https://doi.org/10.1029/96GB03043
  29. Hettiarachchi, V. C. 2005. Mass, heat, and moisture transport in ethanol biofilters. Ph. D. Thesis, University of Calgary, Canada
  30. Hettiaratchi, J. P. A. and V. B. Stein. 2001. Methanobiofilters (MBFs) and landfill cover systems for CH4 emission mitigation. Proceedings of the 17th International Conference on Solid Waste Technology and Management. Philadelphia. USA
  31. Hettiaratchi, J. P. A., V. B. Stein, and G. Achari. 2000. Biofiltration: A cost-effective technique for controlling methane emissions from sub-surface sources. 6th Environmental Issues and Management of Waste in Energy and Mineral Production, Balkema Rotterdam, Netherlands
  32. Hilger, H. A., A. G. Wollum, and M. A. Barlaz. 2000. Landfill methane oxidation response to vegetation, fertilization, and liming. J. Environ. Qual. 29: 324-334 https://doi.org/10.2134/jeq2000.291324x
  33. Hilger, H. A., D. F. Cranford, and M. A. Barlaz. Methane oxidation and microbial exopolymer production in landfill cover soil. Soil Biol. Biochem. 32: 457-467 https://doi.org/10.1016/S0038-0717(99)00101-7
  34. Houweling, S., T. Kaminski, F. Dentener, J. Lelieveld, and M. Heimann. 1999. Inverse modeling of methane sources and sinks using the adjoint of a global transport model. J. Geophys. Res. 104: 26137-26160 https://doi.org/10.1029/1999JD900428
  35. Huber-Humer, M. 2004. Abatement of landfill methane emissions by microbial oxidation in biocovers made of compost. Ph. D. Thesis, University of Natural Resources and Applied Life Sciences, Institute of Waste Management, Vienna, Austria
  36. Huber-Humer, M., S. Roder, and P. Lechner. 2009. Approaches to assess biocover performance on landfills. Waste Manag. doi:10.1016/j.wasman. 2009.02.001
  37. Humer, M. and P. Lechner. 1999. Alternative approach to the elimination of greenhouse gases from old landfills. Waste Manag. Res. 7: 443-452
  38. Humer, M. and P. Lechner. 2001. Microbial methane oxidation for the reduction of landfill gas emissions. J. Solid Waste Technol. Manag. 27: 146-151
  39. Im, J., S. Moon, K. Nam, Y.-J. Kim, and J. Y. Kim. 2009. Estimation of mass transport parameters of gases for quantifying CH4 oxidation in landfill soil covers. Waste Manag. 29: 869-875 https://doi.org/10.1016/j.wasman.2008.07.006
  40. Intergovernmental Panel on Climate Change (IPCC). 1995. Climate Change 1995: The science of climate change. Cambridge University Press. Cambridge. UK
  41. Intergovernmental Panel on Climate Change (IPCC). 2001. Climate change 2001: The scientific basis. Cambridge University Press. Cambridge. UK
  42. Intergovernmental Panel on Climate Change (IPCC). 2007. Climate change 2007: The physical science basis. Cambridge University Press. Cambridge. UK
  43. Jaffrin, A., N. Bentounes, A. M. Joan, and S. Makhlouf. 2003. Landfill biogas for heating greenhouses and providing carbon dioxide supplement for plant growth. Biosys. Eng. 86: 113-123 https://doi.org/10.1016/S1537-5110(03)00110-7
  44. Janni, K. A., W. J. Maier, T. H. Kuehn, C. H. Yang, B. B. Bridges, D. Vesley, and M. A. Nellis. 2001. Evaluation of biofiltration of air-an innovative air pollution control strategy. ASHRAE Transactions 107: 198-214
  45. Karl, T. R. and K. E. Trenbert. 2003. Modern global climate change. Science 302: 1719-1723 https://doi.org/10.1126/science.1090228
  46. Kettunen, R. H. and J. A. Rintala. 1997. The effect of low temperature (5-29oC) and adaptation on the methanogenic activity of biomass. Appl. Microbiol. Biotechnol. 48: 570-576 https://doi.org/10.1007/s002530051098
  47. Kravchenko, I. K. 2002. Methane oxidation in boreal peat soils treated with various nitrogen compounds. Plant Soil 242: 157-162 https://doi.org/10.1023/A:1019614613381
  48. Kumar, S., A. N. Mondal, S. A. Gaikwad, S. Devotta, and R. N. Singh. 2004. Qualitative assessment of methane emission inventory from municipal solid waste disposal sites: a case study. Atmos. Environ. 38: 4921-4929 https://doi.org/10.1016/j.atmosenv.2004.05.052
  49. Kumaraswamy, S., B. Ramakrishnan, and N. Sethunathan. 2001. Methane production and oxidation in an anoxic rice soil as influenced by inorganic redox species. J. Environ. Qual. 30: 2195-2201 https://doi.org/10.2134/jeq2001.2195
  50. Laurila, T., J.-P. Tuovinen, A. Lohila, J. Hatakka, M. Aurela, T. Thum, M. Pihlatie, J. Rinne, and T. Vesala. 2005. Measuring methane emissions from a landfill using a costeffective micrometeorological method. Geophys. Res. Lett. 32: L19808. doi:10.1029/2005GL023462
  51. Le Mer, J. P. and Roger. 2001. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 37: 25-50 https://doi.org/10.1016/S1164-5563(01)01067-6
  52. Lelieveld, J., P. Crutzen, and F. J. Dentener. 1998. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus Series 50B: 128-150 https://doi.org/10.1034/j.1600-0889.1998.t01-1-00002.x
  53. McDonald, I. R., L. Bodrossy, Y. Chen, and J. C. Murrell 2008. Molecular ecology techniques for the study of aerobic methanotrophs. Appl. Environ. Microbiol. 74: 1305-1315 https://doi.org/10.1128/AEM.02233-07
  54. Min, H., Z. Y. Chen, W. X. Wu, and M. C. Chen. 2002. Microbial aerobic oxidation of methane in paddy soil. Nut. Cyc. Agroecosys. 64: 79-85 https://doi.org/10.1023/A:1021127621257
  55. Mohanty, R. S., K. Bharati, N. Deepa, and K. T. Adhya. 2000. Influence of heavy metals on methane oxidation in tropical rice soils. Ecotoxicol. Environ. Saf. 47: 277-284 https://doi.org/10.1006/eesa.2000.1963
  56. Mosier, A. R., J. M. Duxbury, J. R. Freney, O. Heinemeyer, K. Minami, and D. E. Johnson. 1998. Mitigating agricultural emissions of methane. Climatic Change 40: 39-80 https://doi.org/10.1023/A:1005338731269
  57. Muezzinoglu, A. 2003. A study of volatile organic sulfur emissions causing urban odors. Chemosphere 51: 245-252 https://doi.org/10.1016/S0045-6535(02)00821-4
  58. Nikiema, J., L. Bibeau, J. Lavoie, R. Brzezinski, J. Vigneux, and M. Heitz. 2004. Biogas, a real problem: Biofiltration, a promising solution. Proceedings of the USCCSC-TRG Conference on Biofiltration, Los Angeles, USA
  59. Nikiema, J., R. Brzezinski, and M. Heitz. 2007. Elimination of methane generated from landfills by biofiltration: a review. Rev. Environ. Sci. Biotechnol. 6: 261-284 https://doi.org/10.1007/s11157-006-9114-z
  60. Olivier., J. G. J., A. F. Bouwman, J. J. M. Berdowski, C. Veldt, J. P. J. Bloos, A. J. H. Visschedijk, C. W. M. van der Maas, and P. Y. J. Zasndveld. 1999. Sectoral emission inventories of greenhouse gases for 1990 on a per country basis as well as on 1${\times}$1. Environ. Sci. Pol. 2: 241-263 https://doi.org/10.1016/S1462-9011(99)00027-1
  61. Park, S. Y., K. W. Brown, and J. C. Thomas. 2004. The use of biofilters to reduce atmospheric methane emissions from landfills: part I biofilter design. Wat. Air Soil Poll. 155: 63-85 https://doi.org/10.1023/B:WATE.0000026522.36984.42
  62. Park, S., I. Lee, C. Cho, and K. Sung. 2008. Effects of earthworm cast and powdered activated carbon on methane removal capacity of landfill cover soils. Chemosphere 70: 1117-1123 https://doi.org/10.1016/j.chemosphere.2007.07.034
  63. Park, S., K. W. Brown, and J. C. Thomas. 2002. The effect of various environmental and design parameters on methane oxidation in a model biofilter. Waste Manag. Res. 20: 434-444 https://doi.org/10.1177/0734242X0202000507
  64. Parker, T., J. Dottridge, and S. Kelly. 2002. Investigation of the composition and emissions of trace components in landfill gas. Environmental Agency R&D Technical Report P1-438/TR
  65. Perdikea, K., A. K. Mehrotra, J. Patrick, and A. Hettiaratchi. 2008. Study of thin biocovers (TBC) for oxidizing uncaptured methane emissions in bioreactor landfills. Waste Manag. 28: 1364-1374 https://doi.org/10.1016/j.wasman.2007.06.017
  66. Perry, R. H., D. W. Green, and J. O. Maloney. 1997. Perry's chemical engineers handbook. 7th edn, McGraw-Hill, New York, USA
  67. Philopoulos, A., J. Ruck, and D. McCartney. 2009. A laboratory-scale comparison of compost and sand-compostperlite as methane-oxidizing biofilter media. Waste Manag. Res. 27: 138-146 https://doi.org/10.1177/0734242X08091555
  68. Popov, V. 2005. A new landfill system for cheaper landfill gas purification. Renewable Energy 30: 1021-1029 https://doi.org/10.1016/j.renene.2004.09.018
  69. Powelson, D. K., J. Chanton, T. Abichou, and J. Morales. 2006. Methane oxidation in water-spreading and compost biofilters. Waste Manag. Res. 24: 528-536 https://doi.org/10.1177/0734242X06065704
  70. Reay, D. S. and D. B. Nedwell. 2004. Methane oxidation in temperate soils: effects of inorganic N. Soil Biol. Biochem. 36: 2059-2065 https://doi.org/10.1016/j.soilbio.2004.06.002
  71. Reinhart, D. R. and A. B. Al-Yousfi. 1996. The impact of leachate recirculation on municipal solid waste landfill operating characteristics. Waste Manag. Res. 14:337-346 https://doi.org/10.1006/wmre.1996.0035
  72. Sly, L. I., L. J. Bryant, J. M. Cox, and J. M. Anderson. 1993. Development of a biofilter for the removal of methane from coal mine ventilation atmospheres. Appl. Microbiol. Biotechnol. 39: 400-404
  73. Spokas, K., J. Bogner, J. P. Chanton, M. Morcet, C. Aran, C. Graff, Y. M.-L. Golvan, and I. Hebe. 2006. Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems?. Waste Manag. 6: 516-525 https://doi.org/10.1016/j.wasman.2005.07.021
  74. Stein, V. B. and J. P. A. Hettiaratchi. 2001. Methane oxidation in three Alberta soils: influence of soil parameters and methane flux rates. Environ. Technol. 22: 101-111 https://doi.org/10.1080/09593332208618315
  75. Stein, V. B., J. P. A. Hettiaratchi, and G. Achari. 2001. A numerical model for biological oxidation and migration of methane in soils. ASCE Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 5: 225-234 https://doi.org/10.1061/(ASCE)1090-025X(2001)5:4(225)
  76. Stralis-Pavese, N., L. Bodrossy, T. G. Reichenauer, A. Weilharter, and A. Sessitsch. 2006. 16S rRNA based T-RFLP analysis of methane oxidizing bacteria-Assessment, critical evaluation of methodology performance and application for landfill site cover soils. Appl. Soil Ecol. 31: 251-266 https://doi.org/10.1016/j.apsoil.2005.05.006
  77. Streese, J. and R. Stegmann. 2003. Microbial oxidation of methane from old landfills in biofilters. Waste Manag. 23: 573-580 https://doi.org/10.1016/S0956-053X(03)00097-7
  78. Tagaris, E., R.-E. P. Sotiropoulou, C. Pilinis, and C. P. Halvadakis. 2003. A methodology to estimate odors around landfill sites: the use of methane as an odor index and its utility in landfill sitting. J. Air Waste Manag. Assoc. 53: 629-634 https://doi.org/10.1080/10473289.2003.10466198
  79. Torsvik V. and L. Ovreas. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr. Opin. Microbiol. 5: 240-245 https://doi.org/10.1016/S1369-5274(02)00324-7
  80. Trotsenko, Y. A. and V. N. Khmelenina. 2002. Biology of extremophilic and extremotolerant methanotrophs. Arch. Microbiol. 177: 123-131 https://doi.org/10.1007/s00203-001-0368-0
  81. United States Department of Energy (USDE). 2005. US climate change technology program-technology options for the near and long term, p. 210
  82. Visvanathan, C., D. Pokhrel, W. Cheimchaisri, J. P. A. Hettiaratchi, and J. S. Wu. 1999. Methanotrophic activities in tropical landfill cover soils: effects of temperature, moisture content and methane concentration. Waste Manag. Res. 17: 313-323 https://doi.org/10.1034/j.1399-3070.1999.00052.x
  83. Wilshusen, J. H., J. P. A. Hettiaratchi, and V. B. Stein. 2004. Long-term behavior of passively aerated compost, methanotrophic biofilter columns. Waste Manag. 24: 643-653 https://doi.org/10.1016/j.wasman.2003.12.006