Cell Surface Display of Arylsulfatase Gene from Pseudoalteromonas carageenovora in Saccharomyces cerevisiae

Saccharomyces cerevisiae에서 Pseudoalteromonas carageenovora 유래 Arylsulfatase 유전자의 표층 발현

  • Cho, Eun-Soo (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Kim, Hyun-Jin (Department of Biomaterial Control, Dong-Eui University) ;
  • Jung, So-A (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Kim, Jeong-Hwan (Department of Biomaterial Control, Dong-Eui University) ;
  • Kim, Yeon-Hee (Department of Biotechnology and Bioengineering, Dong-Eui University) ;
  • Nam, Soo-Wan (Department of Biotechnology and Bioengineering, Dong-Eui University)
  • 조은수 (동의대학교 생명공학과) ;
  • 김현진 (동의대학교 바이오물질제어학과) ;
  • 정소아 (동의대학교 생명공학과) ;
  • 김정환 (동의대학교 바이오물질제어학과) ;
  • 김연희 (동의대학교 생명공학과) ;
  • 남수완 (동의대학교 생명공학과)
  • Published : 2009.12.28

Abstract

In this study, the arylsulfatase gene (astA, 984 bp ORF) from Pseudoalteromonas carrageenovora genome was expressed on the cell surface of S. cerevisiae by fusing with Aga2p linked to the membrane anchored protein, Aga1p. The constructed plasmid, pCTAST (7.1 kb), was introduced to S. cerevisiae EBY100 cell, and yeast transformants on YPDG plate showed the hydrolyzing activity for 4-methylumbelliferyl-sulfate and p-nitrophenyl-sulfate. When S. cerevisiae EBY100/pCTAST was grown on YPDG medium, the arylsulfatase activity of cell pellet reached about 1.2 unit/mL, whereas no extracellular arylsulfatase activity was detected. The DNA ladder in agarose prepared from agar by this recombinant arylsulfatase showed similar resolution and migration patterns with a commercial agarose. This results revealed that arylsulfatase expressed on the cell surface of S. cerevisiae could be applicable to the economic production of electrophoretic-grade agarose.

P. carageenovora 유래 arylsulfatase 유전자(astA)의 효모표면발현 plasmid pCTAST(7.1 kb)를 구축하여 S. cerevisiae EBY100에 형질전환하였고, 선별된 형질전환체들을 YPDG 배지에서 배양했을 때 4-methylumbelliferyl sulfate를 분해하여 형광을 보였다. 이는 효모에서 arylsulfatase가 활성형으로 생산되었음을 의미하였다. S. cerevisiae EBY100/pCTAST를 플라스크 배양했을 때 arylsulfatase 활성은 galactose가 완전히 소모된 배양 48시간째 최대 활성인 1.2 unit/mL로 나타났으며 배양 상등액에서는 활성이 나타나지 않았다. 효모 S. cerevisiae의 세포표면에서 발현된 재조합 arylsulfatase로 제조된 agarose를 agar와 시판용 agarose와 함께 ${\lambda}DNA$ HindIII marker를 사용하여 DNA 전기영동 성능을 비교 실험한 결과, agar보다는 재조합 arylsulfatase 처리로 제조한 agarose가 이동성이나 분리능에서 우수하였으며, 시판용 agarose와 비교하여 이동성이나 분리능이 유사한 결과를 확인할 수 있었다. 본 연구의 결과, 효모 S. cerevisiae의 세포표면에서 발현된 재조합 arylsulfatase 효소를 이용하여 한천으로부터 전기영동용 고순도 친환경적인 agarose 생물 생산 공정에 적용 가능함을 알 수 있었다.

Keywords

References

  1. Akagawa-Matsushita, M., M. Matsuo, Y. Koga, and K. Yamasato. 1992. Alteromonas atlantica sp. nov. and Alteromonas carrageenovora sp. nov., bacteria that decompose algal polysaccharides. Int. J. Syst. Bacteriol. 42: 621-627 https://doi.org/10.1099/00207713-42-4-621
  2. Allan, G., P. G. Johnson, Y. Lay, and K. V. Sarkanen. 1971. Marine polymers; Part 1. A new procedure for the fractionation of agar. Carbohyd. Res. 17: 234-236 https://doi.org/10.1016/S0008-6215(00)81565-7
  3. Barbeyron, T., P. Potin, C. Richard, O. Collin, and B. Kloareg. 1995. Arysulphatase from Alteromonas carrageenovora. Microbiology 141: 2897-2904 https://doi.org/10.1099/13500872-141-11-2897
  4. Boder, E. T. and K. D. Wittrup. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15: 553-557 https://doi.org/10.1038/nbt0697-553
  5. Byun, D. S., D. S. Kim, J. Samuel Godber, S. W. Nam, M. J. Oh, H. S. Shim, and H. R. Kim. 2004. Isolation and characterization of marine bacterium producing arylsulfatase. J. Microbiol. Biotechnol. 14: 1134-1141
  6. De Hostos, E. L., R. K. Togasaki, and A. Grossman. 1988. Purification and biosynthesis of a derepressible periplasmic arylsulfatase from Chlamydomonas reinharditii. J. Cell Biol. 106: 29-37 https://doi.org/10.1083/jcb.106.1.29
  7. Do, J. R. 1997. Extraction and purification of agar from Gelidium amansii. J. Kor. Fish. Soc. 30: 423-427
  8. Do, J. R. and S. W. Oh. 1999. Preparation of agarose from Gelidium amansii for gel electrophoresis using various purification methods and its resolution characteristics for DNA. Kor. J. Food Sci. Technol. 31: 110-114
  9. Do, J. R., J. H. Park, and K. S. Jo. 1998. A manufacturing technique of agar with strong gelling ability from Gelidium amansii. J. Kor. Fish. Soc. 31: 673-676
  10. Duagherty, P. S., M. J. Olsen, B. L. Linverson, and G. Georgiou. 1999. Development of an optimized expression system for the screening of antibody libraries displayed on the Esherichia coli surface. Protein Eng. 12: 613-621 https://doi.org/10.1093/protein/12.7.613
  11. Duckworth, M. and W. Yaphe. 1971. The structure agar. Part 1. The fractionation of a complex mixture of polysaccarides. Carbohyd. Res. 16: 189-197 https://doi.org/10.1016/S0008-6215(00)86113-3
  12. Flemenger, G., B. Solomon, T. Wolf, and E. Hadas. 1990. Effect of polyethylene glycol on the non-specific adsorption of proteins to Eupergit C and agarose. J. Chromatog. 510: 271-279 https://doi.org/10.1016/S0021-9673(01)93761-6
  13. Georgiou, G., H. L. Poetschke, C. Stathopoulos, and J. A. Francisco. 1993. Practical applications of engineering gramnegative bacterial cell surfaces. Trends Biotechnol. 11: 6-10 https://doi.org/10.1016/0167-7799(93)90068-K
  14. Guiseley, K. B. 1970. The relationship between methoxyl content and gelling temperature of agarose. Carbohyd. Res. 13: 247-256 https://doi.org/10.1016/S0008-6215(00)80831-9
  15. Guiseley, K. B., F. H. Kirpatrick, R. B. Provonchee, M. M. Dumais, and S. Nochumson. 1993. A further fractionation of agarose. Hydrobiologia 260: 505-511 https://doi.org/10.1007/BF00049063
  16. Hoshi, M. and T. Moriya. 1980. Arylsulfatase of sea-urchin sperm. 2. Arylsulfatase as a lysin of sea-urchins. Dev. Biol. 74: 343-350 https://doi.org/10.1016/0012-1606(80)90436-4
  17. Izumi, K. 1970. A new method for fractionation of agar. Agr. Biochem. 34: 1739-1740 https://doi.org/10.1271/bbb1961.34.1739
  18. Kim, D. E., K. H. Kim, Y. J. Bae, J. H. Lee, Y. H. Jang, and S. W. Nam. 2005. Purification and characterization of the recombinant arylsulfatase cloned from Pseudoalteromonas carrageenovora. Protein Expr. Purif. 39: 107-115 https://doi.org/10.1016/j.pep.2004.09.007
  19. Kim, H. C., H. J. Kim, W. B. Choi, and S. W. Nam. 2006. Inulooligosaccharides production from inulin by Saccharomyces cerevisiae strain displaying cell-surface endoinulinase. J. Microbiol. Biotechnol. 16: 360-367
  20. Kim, H. C., C. K. Lim, B. W. Kim, S. J. Jeon, and S. W. Nam. 2005. Surface display of bacillus CGTase on the cell of Saccharomyces cerevisiae. Kor. J. Life Sci. 15: 118-123
  21. Kim, H. J., J. H. Lee, H. C. Kim, J. W. Lee, Y. H. Kim, and S. W. Nam. 2007. Characterization of cyclofructans from inulin by Saccharomyces cerevisiae strain displaying cellsurface cycloinulooligosaccharide fructanotransferase. J. Microbiol. Biotechnol. 17: 695-700
  22. Kim, H. J., J. H. Lee, Y. H. Kim, and S. W. Nam. 2008. Production of xylooligosaccharides by yeast cell surfacedisplayed endoxylanase. Kor. J. Microbiol. Biotechnol. 36: 307-313
  23. Kim, M. J., Y. H. Jang, M. H. Sung, Y. H. Kim, and S. W. Nam. 2007. Constitutive expressionof arylsulfatase from Pseudoalteromonas carageenovora in E. coli and its application to preparation of agarose. Kor. J. Microbiol. Biotechnol. 35: 11-16
  24. Kondo, A. and M. Ueda. 2004. Yeast cell-surface displayapplications of molecular display. Appl. Microbiol. Biotechnol. 64: 28-40 https://doi.org/10.1007/s00253-003-1492-3
  25. Lee, H. S., C. Rhee, and H. C. Yang. 1985. A study on the purification by protein precipitants and washing of agar. Kor. J. Food Sci. Technol. 17: 340-344
  26. Lim, J. M., Y. H. Jang, H. R. Kim, Y. T. Kim, T. J. Choi, J. K. Kim, and S. W. Nam. 2004. Overexpression of arylsulfatase in E. coli and its application to desulfatation of agar. J. Microbiol. Biotechnol. 14: 777-782
  27. Lipke, P. N. and J. Kurjan. 1992. Sexual agglutination in budding yeasts: Structure, function and regulation of adhesion glycoproteins. Mocrobiol. Rev. 56:180-194
  28. Little, M., P. Fuchs, F. Breitling, and S. Dubel. 1993. Bacterial surface presentation of proteins and peptides: and alternative to phage technology. Trends Biotechnol. 11: 3-5 https://doi.org/10.1016/0167-7799(93)90067-J
  29. Mackie, W. and R. D. Preston. 1974. Cell wall and intracellular region polysaccharides. In: Stewart Wep (eds) Algal physiology and biochemistry. Antarct. Sci. 13: 64-65
  30. Melo, M. R. S., J. P. A. Feitosa, A. L. P. Freitas, and R. C. M. de Paula. 2002. Isolation and characterization of soluble sulfated polysaccaride from the red seaweed Gracilaria cornea. Carbohydr. Polym. 49: 491-498 https://doi.org/10.1016/S0144-8617(02)00006-1
  31. Milanesi, A. A. and J. W. C. Bind. 1972. Lysosomal enzymes in aquatic species II. Distribution and particle properties of thermally acclimated muscle lysosomes of rainbow trout Salmo gairdeneri. Comp. Biochem. Physiol. 41: 473-491 https://doi.org/10.1016/0305-0491(72)90120-4
  32. Renn, D. 1997. Biotechnology and the red seaweed polysaccharide industry: Status, needs and prospects. Trends biotechnol. 15: 9-14 https://doi.org/10.1016/S0167-7799(96)10069-X
  33. Schreuder, M. P., A. T. Mooren, H. Y. Toschka, C. T. Verrips, and F. M. Klis. 1996.Immobilizing proteins on the surface of yeast cells. Trends Biotechnol. 14: 115-120 https://doi.org/10.1016/0167-7799(96)10017-2
  34. Schreuder, M. P., C. Deen, W. J. A. Boersma, P. H. Pouwels, and F. M. Klis. 1996. Yeast expressing Hepatitis B virus surface antigen determinants on its surface: implications for a possible oral vaccine. Vaccine 14: 383-388 https://doi.org/10.1016/0264-410X(95)00206-G
  35. Yoon, H. S. and Y. H. Park. 1984. Studies on the composition of agarose and agartin in agar-agar. Bull Kor. Fish. Soc. 24: 27-33