DOI QR코드

DOI QR Code

Geospatial Assessment of Frost and Freeze Risk in 'Changhowon Hwangdo' Peach (Prunus persica) Trees as Affected by the Projected Winter Warming in South Korea: II. Freezing Risk Index Based on Dormancy Depth as a Proxy for Physiological Tolerance to Freezing Temperature

겨울기온 상승에 따른 복숭아 나무 '장호원황도' 품종의 결과지에 대한 동상해위험 공간분석: II. 휴면심도로 표현한 생리적 내동성에 근거한 동해위험지수

  • Kim, Jin-Hee (Department of Ecosystem Engineering, Kyung Hee University) ;
  • Kim, Soo-Ock (Department of Ecosystem Engineering, Kyung Hee University) ;
  • Chung, U-Ran (Department of Ecosystem Engineering, Kyung Hee University) ;
  • Yun, Jin-I. (Department of Ecosystem Engineering, Kyung Hee University) ;
  • Hwang, Kyu-Hong (STA Inc.) ;
  • Kim, Jung-Bae (Fruit Research Division, National Institute of Horticultural and Herbal Sciences) ;
  • Yoon, Ik-Koo (Fruit Research Division, National Institute of Horticultural and Herbal Sciences)
  • 김진희 (경희대학교 생태시스템공학과) ;
  • 김수옥 (경희대학교 생태시스템공학과) ;
  • 정유란 (경희대학교 생태시스템공학과) ;
  • 윤진일 (경희대학교 생태시스템공학과) ;
  • 황규홍 (주식회사 에스티에이) ;
  • 김정배 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 윤익구 (농촌진흥청 국립원예특작과학원 과수과)
  • Published : 2009.12.30

Abstract

In order to predict the risk of freeze injury for 'Changhowon Hwangdo' peach trees, we used the dormancy depth (i.e., the daily chill unit accumulation during the overwintering period) as a proxy for the short-term, physiological tolerance to freezing temperatures. A Chill-days model was employed and its parameters such as base temperature and chilling requirement were optimized for peach trees based on the 12 observational experiments during the 2008-2009 winter. The model predicted the flowering dates much closer to the observations than other models without considering dormancy depth, showing the strength of employing dormancy depth into consideration. To derive empirical equations for calculating the probabilistic freeze risk, the dormancy depth was then combined with the browning ratio and the budburst ratio of frozen peach fruit branches. Given the exact date and the predicted minimum temperature, the equations calculate the probability of freeze damages such as a failure in budburst or tissue browning. This method of employing dormancy depth in addition to freezing temperature would be useful in locating in advance the risky areas of freezing injury for peach trees production under the projected climate change.

복숭아 나무 '장호원황도' 품종의 결과지에 대한 월동기간 중 생리적 내한성을 가리키는 지표로서 일별 기온에 의해 계산되는 휴면심도를 설정하였다. 휴면심도 추정모형의 최적모수(기준온도, 저온요구도)를 도출하기 위해 2008-2009 겨울 동안 총 12회에 걸친 실험을 수행한 결과, 내생휴면해제에 필요한 '장호원황도'의 기준온도 $5.7^{\circ}C$와 저온요구도 -108을 얻었다. 1992-2008년 기간 중 수원기상대 일 최고 및 최저기온자료를 이용하여 이 모형에 의해 '장호원황도'의 만개기를 예측하고 기존의 DVS모형과 회귀모형에 의한 예상 만개기와 비교한 결과 이 모형의 예측능력이 우수하였다. 이 모형에 의해 추정된 휴면심도를 선행연구에서 얻은 동해유발온도와 결합하여 동해위험확률을 계산할 수 있는 경험식을 도출하였다. 날짜와 최저기온이 주어지면 이 식에 의해 '장호원황도'의 갈변이나 발아장해 등 동해증상이 나타날 수 있는 확률, 즉 동해위험 지수를 미리 알 수 있으므로 복숭아 재배농가의 동해 경감에 기여할 것으로 기대된다.

Keywords

References

  1. Aron, R. H., 1983: Availability of chilling temperatures in California, Agricultural Meteorology 28, 351-363 https://doi.org/10.1016/0002-1571(83)90011-0
  2. Balandier, P., M. Bonhomme, R. Rageau, F. Capitan, and E. Parisot, 1993: Leaf bud endodormancy release in peach trees: evaluation of temperature models in temperate and tropical climates, Agricultural and Forest Meteorology,67, 95-113 https://doi.org/10.1016/0168-1923(93)90052-J
  3. Butson, K. D., and F. J. Gerber, 1964: Temperature hazards to peaches in Florida, Proceedings of the Florida State Horticultural Society 77, 395-401
  4. Cesaraccio, C., D. Spano, R. L. Snyder, and P. Duce, 2004: Chilling and forcing model to predict bud-burst of crop and forest species, Agricultural and Forest Meteorology,126, 1-13 https://doi.org/10.1016/j.agrformet.2004.03.002
  5. Chung, U., S. O. Kim, and J. I. Yun, 2008: Plant hardiness zone mapping based on a combined risk analysis using dormancy depth index and low temperature extremes - a case study with "Campbell Early" grapevine-. Korean Journal of Agricultural and Forest Meteorology 10, 121-131 (In Korean with English abstract) https://doi.org/10.5532/KJAFM.2008.10.4.121
  6. Chung, U., J. H. Kim, S. O. Kim, M. H. Choi, K. H. Hwang, and J. I. Yun, 2009: Geospatial assessment of frost and freeze risk in 'Changhowon Hwangdo' peach (Prunus persica) trees as affected by the projected winter warming in South Korea: I. Determination of freezing temperatures, Korean Journal of Agricultural and Forest Meteorology11, 206-212 (In Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.4.206
  7. Faust, M., 1989: Resistance of fruit trees to cold. In Physiology of Temperate Zone Fruit Trees, John Wiley and Sons, 307-331
  8. Han, J. H., S. H. Lee, J. J. Choi, S. B. Jung, and H. I. Jang, 2008: Estimation of dormancy breaking time by development rate model in 'Niitaka' pear (Pyrus pirifolia Nakai), Korean Journal of Agricultural and Forest Meteorology 10, 58-64 (In Korean with English abstract) https://doi.org/10.5532/KJAFM.2008.10.2.058
  9. Jung, J. E., E. Y. Kwon, U. Chung, and J. I. Yun, 2005: Predicting cherry flowering date using a plant phenology model, Korean Journal of Agricultural and Forest Meteorology 7, 148-155 (In Korean with English abstract)
  10. Kim, S. O., J. H. Kim, U. Chung, S. H. Kim, G. H. Park, and J. I. Yun, 2009: Quantification of temperature effects on flowering date determination in Niitaka pear, Korean Journal of Agricultural and Forest Meteorology 11, 61- 71 (In Korean with English abstract) https://doi.org/10.5532/KJAFM.2009.11.2.061
  11. Kwon, E. Y., G. C. Song, and J. I. Yun, 2005: Prediction of dormancy release and bud burst in Korean grapevine cultivars using daily temperature data, Korean Journal of Agricultural and Forest Meteorology 7, 185-191 (In Korean with English abstract)
  12. Richardson, E. A., S. D. Seeley, and D. R. Walker, 1974: A model for estimating the completion of rest for Redhaven and Elberta peach trees, HortScience 9, 331-332
  13. Butson, K. D., and F. J. Gerber, 1964: Temperature hazards to peaches in Florida, Proceedings of the Florida State Horticultural Society 77, 395-401
  14. 국립농업과학원, 1990: 주요과수재배지역의 기후특성. 농촌진흥청, p165-183
  15. 농촌진흥청, 2003: 농업과학기술 연구조사분석기준. 농촌진흥청, p528

Cited by

  1. Prediction of full blooming dates of five peach cultivars ( Prunus persica ) using temperature-based models vol.220, 2017, https://doi.org/10.1016/j.scienta.2017.04.007
  2. An Agrometeorological Reference Index for Projecting Weather-Related Crop Risk under Climate Change Scenario vol.18, pp.3, 2016, https://doi.org/10.5532/KJAFM.2016.18.3.162
  3. Developmental Rate Equations for Predicting Blooming Date of 'Yumyeong' (Prunus persica) Peach Trees vol.14, pp.4, 2012, https://doi.org/10.5532/KJAFM.2012.14.4.189
  4. Influence of Low Temperature and Chilling Time on Freezing Hardness of Apple Dwarf-rootstocks and Main Cultivars in Korea vol.16, pp.1, 2014, https://doi.org/10.5532/KJAFM.2014.16.1.59
  5. Geospatial Assessment of Frost and Freeze Risk in 'Changhowon Hwangdo' Peach (Prunus persica) Trees as Affected by the Projected Winter Warming in South Korea: III. Identifying Freeze Risk Zones in the Future Using High-Definition Climate Scenarios vol.11, pp.4, 2009, https://doi.org/10.5532/KJAFM.2009.11.4.221
  6. Freeze Risk Assessment for Three Major Peach Growing Areas under the Future Climate Projected by RCP8.5 Emission Scenario vol.14, pp.3, 2012, https://doi.org/10.5532/KJAFM.2012.14.3.124