Computational Investigation of Pintle Nozzle Flow

핀틀 노즐 유동장의 수치해석적 연구

  • 김중근 (국방과학연구소 1기술본부 6부) ;
  • 이지형 (국방과학연구소 1기술본부 6부) ;
  • 장홍빈 (국방과학연구소 1기술본부 6부)
  • Published : 2009.04.30

Abstract

Both the nozzle expansion ratio and the chamber pressure are simultaneously and continuously changed according to pintle movement, resulting in a different internal flow structure and flow separation characteristics. In this paper, the pintle position effect on nozzle flow structure and separation phenomena is analyzed by experimental-aided Computational Fluid Dynamic(CFD). Among the turbulent models for RANS(Reynold Averaged Navier Stokes) in Fluent, Spalart-Allmaras model is better agreement with the nozzle wall pressure distribution attained by cold-flow test than other models. And even if a conical nozzle is used, there is a shock structure similar to cap-shock pattern mainly occurred in contoured or shaped optimized nozzle because of internal shock generated from pintle tip flow separation.

핀틀 움직임에 따라 노즐 팽창비와 압력비가 동시에 연소면적도 변함에 따라 노즐 내부의 유동장 구조는 물론 유동박리 특성도 변한다. 본 논문에서는 핀틀 위치가 노즐 내부 유동장 구조에 미치는 영향을 공압시험과 수치해석 기법을 이용하여 분석하였다. Fluent에서 제공하는 RANS를 위한 난류모델을 적용한 결과, Spalart-Allmaras 모델이 공압시험에 얻은 노즐벽면 압력을 잘 모사하는 것으로 나타났다. 적용된 노즐이 원뿔형 노즐이었음에도 핀틀 끝단에서 발생한 유동박리에 의한 충격파 때문에 Contoured 또는 Optimized 노즐에서 나타나는 Cap-shock pattern과 유사한 유동 구조가 나타났다.

Keywords

References

  1. Charles T. Levinsky, and Gerald F. Kobalter, 'Feasibility demonstration of a single chamber controllable solid rocket motor', AFRPL-TR-67-300, 1968
  2. M.J. Ostrander, J.L. Bergmans, and M.E. Thomas, 'Pintle motor challenges for tactical missile,' AIAA-2000-3310, 2000
  3. S. Burroughs, 'Status of army pintle technology for controllable thrust propulsion,' AIAA-2002-3598, 2001
  4. Craig A. Hunter, 'An approximation theoretical method for modeling the static thrust performance on non-axisymmetric two-dimensional convergent-divergent nozzle', NASA Contract Report 195050, 1995
  5. Jan Ostlund, "Flow Processes in Rocket Engine nozzle with focus on flow separation and side-loads", Licentiate Thesis, 2002
  6. R.J. Prozan and G.D. Luke, 'CFD prediction on nozzle flow separation without boundary layer resolution', AIAA-99-2645, 1999
  7. E. Leon Morrisette and Theodore J. Goldberg, 'Turbulent-Flow separation criteria for over-expanded supersonic nozzles', NASA Technical Paper 1207, 1978
  8. 김중근,이지형,오종윤,장홍빈, '공압 시험을 이용한 추력가변 노즐의 정상상태 성능 연구', 한국 추진 공학회 '07 제28회 춘계학술대회논문집, 2007, pp.289-294
  9. G.L. Romine, 'Nozzle Flow separation', AIAA journal, Vol. 36, No. 9, 1998, pp.1618-1625 https://doi.org/10.2514/2.588
  10. Francis R. Hama, 'Experimental Studies on the Lip Shock', AIAA-67-29
  11. Takashi Ito, Kozo Fujii and A. Koich Hayashi, 'Computations of the axisymmetric plug nozzle flow fields', AIAA-99-2311
  12. Fracesco Nasuti, Marcello Onofri and Elisa Pietropaoli, 'Prediction of shock generated vortices in Rocket Nozzles', AIAA-2005-317
  13. F. Nasuti and M. Onofri, 'Viscous and Inviscid vortex generation during startup of rocket nozzles', AIAA, Vol. 36, No. 5, 1998, pp.809-815 https://doi.org/10.2514/2.440
  14. Francesco Nasuti, Marcello Onofri and Emanuele Martelli, 'Numerical Analysis of flow separation structure in Rocket nozzles', AIAA-2007-5473
  15. J. Ostlund and B. Muhammad-Klingmann, ' Supersonic Flow separation with Application to rocket Engine Nozzles', Applied Mechanics Review, Vol. 58, 2005, pp.143-175 https://doi.org/10.1115/1.1894402