DOI QR코드

DOI QR Code

Etching Mechanism of Indium Tin Oxide Thin Films using Cl2/HBr Inductively Coupled Plasma

  • Kim, Sung-Ihl (Department of IT Electronics Engineering, Daejon University) ;
  • Kwon, Kwang-Ho (Department of Control and Instrumentation Engineering, Korea University)
  • Published : 2009.02.28

Abstract

Dry etching characteristics of indium tin oxide films and etch selectivities over photoresist films were investigated using $Cl_2/HBr$ inductively coupled plasma. From a Langmuir probe diagnostic system, it was observed that while the plasma temperature was kept nearly constant in spite of the change of the HBr mixing ratio, the positive ion density decreases rapidly with increasing the mixing ratio. On the other hand, a quadrupole mass spectrometer showed that the neutral HBr and Br species increased. The etching mechanism in the $HBr/Cl_2$ plasma was analyzed.

Keywords

References

  1. L. M. Wang, Y,-J. Chen, and J.-W. Liao, J, Phys. Chem. Solids 69, 527 (2008) https://doi.org/10.1016/j.jpcs.2007.07.115
  2. J. H. Lee, H. K. Jung, J. I. Lee, D. G. Lim, K. J. Yang, J. S. Yi, and W.-C. Song, Thin Solid Films 516, 1634 (2008) https://doi.org/10.1016/j.tsf.2007.05.028
  3. U. Betz, M. K. Olsson, J. Marthy, and M. F. Escola, Thin Solid Films 516, 1334 (2008) https://doi.org/10.1016/j.tsf.2007.03.094
  4. E. Kaneko, KTK Scientific, Tokyo, (1987)
  5. D. Dimos, W. L. Warren, M. B. Sinclair, B. A. Tuttle, and R. W. Schwartz, J. Appl. Phys. 76, 4305 (1994) https://doi.org/10.1063/1.357316
  6. K. Sreenivas, J. Sudersena Rao, A. Mansingh, and S. Chandra, J. Appl. Phys. 57, 384(1985) https://doi.org/10.1063/1.335481
  7. H. Shin, C. Kim, C. Bae, J.-S. Lee, J. Lee, and S. Kim, Appl. Surf. Sci. 253, (2007)
  8. K. Nakamura, T. Imura, H. Sugai, M. Ohkubo, and K. Ichihara, Jpn.J. Appl. Phys. 33, 4438 (1994) https://doi.org/10.1143/JJAP.33.4438
  9. Y. Kuo and T. L. Tai, J. Electrochem. Soc. 145, 4313 (1998) https://doi.org/10.1149/1.1838956
  10. M. Mohri, H. Kakinuma, M. Sakamoto, and H. Sawai, Jpn. J. Appl. Phys. 29, L1932(1990) https://doi.org/10.1143/JJAP.29.L1932
  11. Y. Fukushi, H. Kominami, Y. Nakanishi, and Y. Hatanaka, Appl. Surf. Sci. 244, 537 (2005) https://doi.org/10.1016/j.apsusc.2004.10.115
  12. M. Katayama, Thin Solid Films 341, 140 (1999) https://doi.org/10.1016/S0040-6090(98)01519-3
  13. S. W. Na, M. H. Shin, Y. M. Jung, J. G. Han, and N.-E. Lee, J. Vac. Sci. Technol. A, 23, 898 (2005) https://doi.org/10.1116/1.1894420
  14. A. Efremov, B. G. Choi, S. Nahm, H. W. Lee, N.-K. Min, and K.-H. Kwon, J. Kor. Phys. Soc. 52, 48 (2008) https://doi.org/10.3938/jkps.52.48
  15. E. O. Johnson and L. Malter, Phys. Rev. 80, 58 (1950) https://doi.org/10.1103/PhysRev.80.58
  16. A, Efremov, N.-K. Min, B.-G. Choi, K.-H. Baek, and K.-H. Kwon, J. Electrochem. Soc., 155 D777 (2008) https://doi.org/10.1149/1.2993160

Cited by

  1. Breakdown Voltage and On-resistance Characteristics of N-channel EDMOS with Dual Work Function Gate vol.25, pp.9, 2012, https://doi.org/10.4313/JKEM.2012.25.9.671
  2. Influence of Oxygen Addition and Wafer Bias Voltage on Bromine Atom Surface Reaction in a HBr/Ar Inductively Coupled Plasma vol.52, pp.11S, 2013, https://doi.org/10.7567/JJAP.52.11NC01
  3. Dry Etching of Al2O3Thin Films in O2/BCl3/Ar Inductively Coupled Plasma vol.11, pp.5, 2010, https://doi.org/10.4313/TEEM.2010.11.5.202
  4. Sputtering yields and surface chemical modification of tin-doped indium oxide in hydrocarbon-based plasma etching vol.33, pp.6, 2015, https://doi.org/10.1116/1.4927125
  5. First observation of sol-gel derived Al:CsZnO/CsZnO bilayer thin film for solar cells application vol.131, pp.10, 2016, https://doi.org/10.1140/epjp/i2016-16354-5
  6. A Study on Etching Characteristics of SnO2Thin Films Using High Density Plasma vol.26, pp.11, 2013, https://doi.org/10.4313/JKEM.2013.26.11.826
  7. Nanoparticle and nanosphere mask for etching of ITO nanostructures and their reflection properties vol.212, pp.1, 2015, https://doi.org/10.1002/pssa.201431228