DOI QR코드

DOI QR Code

Effects of Reinforced Fibers on Energy Absorption Characteristics under Quasi-static Compressive Loading of Composite Circular Tubes

강화섬유에 따른 준정적 하중하에서 복합소재 원형튜브의 에너지 흡수특성 평가 연구

  • 김정석 (한국철도기술연구원 철도구조연구실) ;
  • 윤혁진 (한국철도기술연구원 철도구조연구실) ;
  • 이호선 (한국철도기술연구원 철도구조연구실) ;
  • 최경훈 (한국화이바 복합재료 연구소)
  • Published : 2009.12.31

Abstract

In this study, the energy absorption capabilities and failure modes of four different kinds of circular tubes made of carbon, Kevlar and carbon-Kevlar hybrid composites with epoxy resin have been evaluated. In order to achieve these goals, these tubes were fabricated with unidirectional prepregs and compressive tests were conducted for the tubes under 10mm/min loading speed. From the test results, carbon/epoxy tubes were collapsed by brittle fracturing mode and showed the best energy absorption capabilities, while Kevlar/epoxy tubes were crushed by local buckling mode and worst. The hybrid [$90_C/0_K$] tubes were failed in a local bucking mode and showed good post crushing integrity, whereas [$90_K/0_C$] tubes were failed in a lamina bending mode and bad post crushing integrity.

본 연구에서는 탄소, 케블라 및 탄소-케블라 하이브리드 등 4가지 소재로 제작된 원형튜브시편에 대한 에너지 흡수능력 및 파손모드를 평가하였다. 이를 위해, 본 연구에서 일방향 프리프레그를 이용해서 원형튜브 제작하고 10mm/min의 하중속도로 준정적 압축시험을 수행하였다. 시험을 통해 취성파괴모드로 압축되는 탄소/에폭시로 제작된 튜브가 가장 우수한 에너지 흡수 특성을 보인 반면, 좌굴에 의해 압축되는 케블라/에폭시 튜브가 가장 낮은 에너지 흡수특성을 보였다. 하이브리드 [$90_C/0_K$]튜브의 경우 국부좌굴모드에 의해 에너지를 흡수했으며 우수한 압축후 구조온전성 특성을 보였다. [$90_K/0_C$] 튜브의 경우 주 파손모드는 단층굽힘모드이고 압축후 구조온전성이 확보되지 못했다.

Keywords

References

  1. 김정석, 신광복, "복합재 철도차량의 유지보수기법," 한국복합재료학회지, 제17권, 제6호, 2004, pp. 67-70
  2. Kim J. S. and Cheong S. K., "A Study on the Low Velocity Impact Response of Laminates for Composite Railway Bodyshells," Composite Structures, Vol. 77, 2007, pp. 484-492 https://doi.org/10.1016/j.compstruct.2005.08.020
  3. Kim J. S. and Cheong J. C., "Natural Frequency Evaluation of a composite Train Carbody with Length of 23m," Composite Science and Technology, Vol. 66, 2006, pp. 2272-2283 https://doi.org/10.1016/j.compscitech.2005.11.036
  4. 김정석, 정종철, 이상진, "하이브리드 복합재 철도차량차체에 대한 시험적 연구," 한국복합재료학회지, 제18권, 제6호, 2005, pp. 19-25
  5. Kim J. S., Cheong J. C. and Lee S. J., "Numerical and Experimental Studies on the Deformational Behavior of a Composite Train Carbody of the Korean Tilting Train," Composite Structures, Vol. 81, 2008, pp. 225-241 https://doi.org/10.1016/j.compstruct.2006.08.007
  6. C. Kindervater, "The Crashworthiness of Composite Aerospace Structures," Workshop, the Crashworthiness of Composite Transportation Structures, TRL, Crowthorne, 3rd October 2002
  7. M. Wacker and M. Hormann, "Simulation of the Crash Performance of Crash Boxes based on Advanced Thermoplastic Composite," 22nd CAD-FEM Users’ Meeting 2004 International Congress on FEM Technology with ANSYS CFX & ICEM CFD Conference, International Congress Center Dresden, Germany, 2004
  8. Thornton, P. H. and Edwards, P. J. "Energy Absorption in Composite Tubes," Journal of Composite Materials, Vol. 16, November, pp. 521-544, 1982
  9. Farley, Gary L. "Energy Absorption of Composite Materials," Journal of Composite Materials, Vol. 17, May, 1983, pp. 267-279 https://doi.org/10.1177/002199838301700307
  10. Farley, Gary L. "Effect of Fiber and Matrix Maximum Strain on the Energy Absorption of Composite Materials," Journal of Composite Materials, Vol. 20, July, 1986, pp. 322-334 https://doi.org/10.1177/002199838602000401
  11. Farley, Gary L., Bird, Richard K., and Modlin, John T. "The Role of Fiber and Matrix in Crash Energy Absorption of Composite Materials," Journal of the American Helicopter Society, April, 1989, pp. 52-58
  12. N. A. Warrior, T. A. Turner, E. Cooper, M Ribeaux, "Effects of Boundary Conditions on the Energy Absorption of Thin-walled Polymer Composite Tubes Under axial Crushing," Thin-Walled Structures, Vol. 46, 2008, pp. 905-913 https://doi.org/10.1016/j.tws.2008.01.023
  13. H. Ghasemnejad, B. R. K. Blackman, H. Hadavinia and B. Sudall, "Experimental Studies on Fracture Characterizations and Energy Absorption of GFRP Composite Box Structures," Composite Structures, Vol. 88, 2009, pp. 253-261 https://doi.org/10.1016/j.compstruct.2008.04.006
  14. H. Hadavinia and H. Ghasemnejad, "Effects of Mode-I and Mode-II Interlaminar Fracture Toughness on the Energy Absorption of CFRP Twill/weave Composite Box Sections," Composite Structures, Vol. 89, 2009, pp. 303-314 https://doi.org/10.1016/j.compstruct.2008.08.004