Photosynthetic Activity of Epiphytic Algae in Embayment Reed Zone in a Lagoon Connected with Lake Biwa

  • Mitamura, Osamu (Limnological Laboratory, School of Environmental Science, University of Shiga Prefecture) ;
  • Tachibana, Junji (Department of Science, Osaka Prefectural Education Center) ;
  • Ishida, Noriko (Faculty of Literature, Nagoya Women's University) ;
  • Seike, Yasushi (Department of Material Science, Faculty of Science and Engineering, Shimane University) ;
  • Choi, Jun-Kil (Department of Biological Science, Sangji University)
  • Published : 2009.03.31

Abstract

Primary production of epiphytic and planktonic algae in a shallow reed zone of a lagoon Nishinoko was investigated. Concentrations of nutrients varied widely horizontally and locally in the lagoon. It seems that the reed zone has a heterogeneous environment. The photosynthetic rates of epiphytic and planktonic algae were 7 to 14 mg C surface stem $m^{-2}hr^{-1}$ and 12 to $46mg\;Cm^{-3}hr^{-1}$, respectively. The areal primary production of epiphytic algae was estimated as 4 to $13mg\;Cm^{-2}hr^{-1}$ from the stem density of Phragmites and the water depth at each station. The production of phytoplankton, on the other hand, was 5 to $56mg\;Cm^{-2}hr^{-1}$. The contribution of epiphytic algae to total primary production averaged 53%, although the assimilation number was much lower than that of phytoplankton. The present results indicate that the epiphytic algae are one of the significant primary producers in the reed zone.

Keywords

References

  1. Aizaki, M. 1980. Changes in standing crop and photosynthetic rate attendant on the film development of periphyton in a shallow eutrophic river. Jpn. J. Limnol. 41: 225-234 https://doi.org/10.3739/rikusui.41.225
  2. Allen, H.L. 1971. Primary production, chemoorganotrophy, and nutritional interactions of epiphytic algae and bacteria on macrophytes in the littoral of a lake. Ecol. Monogr. 61: 97-127
  3. Allen, H.L. and B.T. Ocevski. 1981. Comparative primary productivity of algal epiphytes on three species of macrophyte in the littoral zone of Lake Ohrid, Yugoslavia. Ecography 4: 155-160 https://doi.org/10.1111/j.1600-0587.1981.tb00992.x
  4. Bendschneider, K. and R.J. Robinson. 1952. A new spectrophotometric method for the determination of nitrite in sea water. J. Mar. Res. 11: 87-96
  5. Bray, G.A. 1960. A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Anal. Biochem. 1: 279-285 https://doi.org/10.1016/0003-2697(60)90025-7
  6. Cattaneo, A. and J. Kalff. 1980. The relative contribution of aquatic macrophytes and their epiphytes to the production of macrophyte beds. Limnol. Oceanogr. 25: 280-289 https://doi.org/10.4319/lo.1980.25.2.0280
  7. Duthie, H.C. and D.K. Jones. 1990. Epilithic algal pro-Duthie, H.C. and D.K. Jones. 1990. Epilithic algal pro-ductivity on the submerged Niagara Escarpment, Georgian Bay, Canada. Verh. Internat. Verein. Limnol. 24: 411-415
  8. Eppley, R.W. 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70: 1063-1085
  9. Eppley, R.W., F.A. Carlucci, O. Holm-Hansen, D. Kiefer, J.J. McCarthy, E. Venrick and P.M. Williams. 1971. Phytoplankton growth and composition in shipboard cultures supplied with nitrate, ammonium, or urea as the nitrogen source. Limnol. Oceanogr. 16: 741-751 https://doi.org/10.4319/lo.1971.16.5.0741
  10. Forsberg, C. and S.O. Ryding. 1980. Eutrophication parameters and trophic state indices in 30 Swedish wast-receiving lakes. Arch. Hydrobiol. 89: 189-207
  11. Glooschenko, W.A., J.E. Moor, M. Munawar and R.A. Vollenweider. 1974. Primary production in Lake Ontario and Erie: a comparative study. J. Fish. Res. Bd. Canada 31: 253-263 https://doi.org/10.1139/f74-045
  12. Golterman, H.L., R.S. Climo and M.A.M. Ohstad. 1978. Methods for physical and chemical analysis of fresh waters. International Biological Programe. Handbooks No. 8, Blackwell Scientific Publications, Oxford, 213pp
  13. Harrison, W.G. and T. Platt. 1980. Variations in assimilation number of coastal marine phytoplankton: Effect of environmental covariates. J. Plankton Res. 2: 249-260 https://doi.org/10.1093/plankt/2.4.249
  14. Hickman, M. and D.M. Klarer. 1973. Methods for measuring the primary productivity and standing crops of an epiphytic algal community attached to Scirpus validus Vahl. Int. Revue ges. Hydrobiol. 58: 893-901
  15. Hill, W.R. and H.L. Boston. 1991. Community development alters photosynthesis-irradiance relations in stream periphyton. Limnol. Oceanogr. 36: 1375-1389 https://doi.org/10.4319/lo.1991.36.7.1375
  16. Hooper, N.M. and G.G.C. Robinson. 1976. Primary production of epiphytic algae in a marsh pond. Can. J. Bot. 54: 2810-2815 https://doi.org/10.1139/b76-300
  17. Ishida, N., O. Mitamura and M. Nakayama. 2006. Seasonal variation in biomass and photosynthetic activity of epilitic algae on a rock at the upper littoral area in the north basin of Lake Biwa, Japan. Limnology 7: 175-183 https://doi.org/10.1007/s10201-006-0181-1
  18. Liboriussen, L. and E. Jeppesen. 2003. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwat. Biol. 48: 418-431 https://doi.org/10.1046/j.1365-2427.2003.01018.x
  19. Malone, T.C. 1977. Light-saturated photosynthesis by phytoplankton size fraction in the New York Bight, U.S.A. Mar. Biol. 42: 281-292 https://doi.org/10.1007/BF00402190
  20. Maltais, M.J. and W.F. Vincent. 1997. Periphyton community structure and dynamics in a subarctic lake. Can. J. Bot. 75: 1556-1569 https://doi.org/10.1139/b97-868
  21. Mandelli, E.F., P.R. Burkholder, T.E. Doheny and R. Brody. 1970. Studies of primary productivity in coastal waters in southern Long Island, New York. Mar. Biol. 7: 191-202
  22. McCarthy, J.J., D. Wynne and T. Berman. 1982. The uptake of dissolved nitrogenous nutrients by Lake Kinneret (Israel) microplankton. Limnol. Oceanogr. 27: 673-680 https://doi.org/10.4319/lo.1982.27.4.0673
  23. Meulemans, J.T. 1988. Seasonal changes in biomass and production of periphyton growing upon reed in Lake Maarsseveen I. Arch. Hydrobiol. 112: 21-42
  24. Mitamura, O., H. Maeda and M. Kawashima. 1999. Seasonal change in photosynthetic activity of photoautotrophic picoplankton in Lake Biwa. Jpn. J. Limnol. 60: 453-467 https://doi.org/10.3739/rikusui.60.453
  25. Mitamura, O. and Y. Saijo. 1981. Studies on the seasonal changes of dissolved organic carbon, nitrogen, phosphorus and urea concentration in Lake Biwa. Arch. Hydrobiol. 91: 1-14
  26. Mitamura, O. and Y. Saijo. 1986. Urea metabolism and its significance in the nitrogen cycle in the euphotic layer of Lake Biwa. I. In situ measurement of nitrogen assimilation and urea decomposition. Arch. Hydrobiol. 107: 23-51
  27. Mitamura, O. and J. Tachibana. 1999. Primary productivity of epiphytic and planktonic algae and biogeochemical characteristics at reed zone of Lake Biwa. Jpn. J. Limnol. 60: 265-280 https://doi.org/10.3739/rikusui.60.265
  28. Miura, T., T. Tanimizu, Y. Iwasa and A. Kawakita. 1978. Macroinvertebrates as an important supplier of nitrogenous nutrients in a dense macrophyte zone in Lake Biwa. Verh. Internat. Verein. Limnol. 20: 1116-1121
  29. M$\ddot{u}$ller, U. 1995. Vertical zonation and production rates of epiphytic algae on Phragmites australis. Freshwater Biology 34: 69-80 https://doi.org/10.1111/j.1365-2427.1995.tb00424.x
  30. M$\ddot{u}$ller, U. 1996. Production rates of epiphytic algae in a eutrophic lake. Hydrobiologia 330: 37-45 https://doi.org/10.1007/BF00020821
  31. Mullin, J.B. and J.P. Riley. 1955. The colorimetric determination of silicate with special reference to sea and natural waters. Anal. Chim. Acta 12: 162-176 https://doi.org/10.1016/S0003-2670(00)87825-3
  32. Murphy, J. and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27: 31-36 https://doi.org/10.1016/S0003-2670(00)88444-5
  33. Nakanishi, M., T. Narita, N. Suzuki and O. Mitamura. 1988. Assimilation number and primary productivity of phytoplankton in the south basin of Lake Biwa. Jpn. J. Limnol. 49: 175-184 https://doi.org/10.3739/rikusui.49.175
  34. Newell, B.S., B. Morgan and J. Cundy. 1967. The determination of urea in seawater. J. Mar. Res. 25: 201-202
  35. Nozaki, K. 2001. Abrupt change in primary productivity in a littoral zone of Lake Biwa with the development of a filamentous green-algal community. Freshwat. Biol. 46: 587-602 https://doi.org/10.1046/j.1365-2427.2001.00696.x
  36. Rjber, H.H., J.P. S$\o$rensen and H.H. Schierup. 1984. Primary productivity and biomass of epiphytes on Phragmites australis in a eutrophic Danish lake. Ecography 7: 202-210 https://doi.org/10.1111/j.1600-0587.1984.tb01122.x
  37. Sagi, T. 1966. Determination of ammonia in sea water by the indophenol method and its application to the coastal and off-shore waters. Oceanogr. Mag. 18: 43-51
  38. Satake, K., Y. Saijo and H. Tominaga. 1972. Determination of small quantities of carbon dioxide in natural waters. Jpn. J. Limnol. 33: 16-20 https://doi.org/10.3739/rikusui.33.16
  39. SCOR/Unesco Working Group 17. 1966. Determination of photosynthetic pigments in sea water. UNESCO 69pp
  40. Steemann Nielsen, E. 1952. Use of radio active carbon (14C) for measuring organic production in the sea. J. Cons. int. Explor. Mer. 18: 117-140
  41. Suzuki, N., M. Kawashima, S. Endoh, Y. Itakura and Y. Kimura. 1993. Study on the reed community at Lake Biwa -Physical, chemical and ecological characteristics in the reed community-. Mem. Fac. Edu., Shiga Univ., Ser. Nat. Sci. 43: 19-41
  42. Tanimizu, K., T. Miura and M. Higashi. 1981. Effect of water movement on the photosynthetic rate of an algal community attached to reed stems. Verh. Internat. Verein. Limnol. 21: 584-589
  43. Wood, E.D., F.A.J. Armstrong and F.A. Richards. 1967. Determination of nitrate in sea water by cadmium-copper reduction to nitrite. J. Mar. Biol. Ass. U.K. 47: 23-31 https://doi.org/10.1017/S002531540003352X