DOI QR코드

DOI QR Code

Growth Kinetics on the Nutrient of the Harmful Algae Chattonella marina and C. ovata (Raphidophyceae) Isolated from the South Sea of Korea

한국 남해산 유해조류 Chattonella marina와 C. ovata (Raphidophyceae)의 영양염에 대한 성장동력학

  • Noh, Il-Hyeon (Faculty of Marine Technology, Chonnam National University) ;
  • Oh, Seok-Jin (Korea Inter-University Institute of Ocean Science, Pukyong University) ;
  • Park, Jong-Sick (Faculty of Marine Technology, Chonnam National University) ;
  • Shin, Hyeon-Ho (Faculty of Marine Technology, Chonnam National University) ;
  • Yoon, Yang-Ho (Faculty of Marine Technology, Chonnam National University)
  • 노일현 (전남대학교 해양기술학부) ;
  • 오석진 (부경대학교 해양과학공동연구소) ;
  • 박종식 (전남대학교 해양기술학부) ;
  • 신현호 (전남대학교 해양기술학부) ;
  • 윤양호 (전남대학교 해양기술학부)
  • Published : 2009.12.31

Abstract

Recently, the occurrence of harmful algae blooms from the Chattonella group has been increasing and expanding in the southern and western seas of Korea. We investigated the relationship between growth kinetics and nutrients in the harmful algae Chattonella marina and Chattonella ovata of the South Sea, Korea. As a result; high concentrations of ammonium ($30\;{\mu}M$ and above) was not effective to the growth of C. ovata, while C. marina displayed good growth at concentration of $100\;{\mu}M$. The half-saturation constant ($K_s$) of C. marina for ammonium ($2.51\;{\mu}M$), nitrate ($5.36\;{\mu}M$) and phosphate ($0.75\;{\mu}M$) was higher than C. ovata (1.85, 4.01, and $0.61\;{\mu}M$, respectively). This indicates that C. ovata can achieve higher cell densities than C. marina under lower nutrient conditions. These $K_s$ values were comparatively higher than those of diatoms and other flagellates previously reported. Therefore, our results indicate that the growth of C. marina and C. ovata is less adapted to lower nutrient environments than other competition species, such as Skeletonema costatum and Cochlodinium polykrikoides.

Keywords

References

  1. Barraza-Guardado R, Cortes-Altamirano R and Sierra-Beltran A. 2004. Marine die-offs from Chattonella marina and Ch. cf. ovata in Kun Kaak Bay, Sonora in the Gulf of California. Harmful Algae News 25, 7-8
  2. Donaghay PL and Osborn TR. 1997. Toward a theory of biological-physical control of harmful algal bloom danamics and impacts. Limnol Oceanogr 42, 1283-1296 https://doi.org/10.4319/lo.1997.42.5_part_2.1283
  3. Dugdale RC. 1967. Nutrient limitation in the sea: dynamic, identification, and significance. Limnol Oceanogr 12, 685-695 https://doi.org/10.4319/lo.1967.12.4.0685
  4. Eppley RW and Coatsworth JL. 1968. Uptake of nitrate and nitrite by Ditylum brightwellii - Kinetics and mechanisms. J Phycol 4, 151-156 https://doi.org/10.1111/j.1529-8817.1968.tb04689.x
  5. Eppley RW, Rogers JN and McCarthy JJ. 1969. Halfsaturation constants for uptake of nitrate and ammonium by marine phytoplankton. Limnol Oceanogr 14, 912-920 https://doi.org/10.4319/lo.1969.14.6.0912
  6. Fauchot J, Levasseur M, Roy S, Gagnon R and Weise AM. 2005. Environmental factors controlling Alexandrium tamarense (Dinophyceae) growth rate during a red tide event in the St. Lawrence Estuary (Canada). J Phycol 41, 263-272 https://doi.org/10.1111/j.1529-8817.2005.03092.x
  7. Hara Y, Doi K and Chihara M. 1994. Four new species of Chattonella (Raphidophyceae, Chromophyta) from Japan. Jpn J Phycol 42, 407-420
  8. Herndon J and Cochlan WP. 2007. Nitrogen utilization by the raphidophyte Heterosigma akashiwo: Growth and uptake kinetics in laboratory cultures. Harmful Algae 6, 260-270 https://doi.org/10.1016/j.hal.2006.08.006
  9. Hiroishi S, Okada H, Imai I and Yoshida T. 2005. High toxicity of the novel bloom forming species Chattonella ovata (Raphidophyceae) to cultured fish. Harmful Algae 4, 783-787 https://doi.org/10.1016/j.hal.2004.12.008
  10. Hosaka M. 1992. Growth characteristics of a strain of Heterosigma akashiwo (Hada) Hada isolated from Tokyo Bay, Japan. Bull Plankton Soc Japan 39, 49-58
  11. Imai I, Yamaguchi M and Hori Y. 2006. Eutrophication and occurrences of harmful algae blooms in the Seto Inland Sea, Japan. Plankton Bonthos Res 1, 71-84 https://doi.org/10.3800/pbr.1.71
  12. Imai I, Yamaguchi M and Watanabe M. 1998. Ecophysiology, life cycle, and bloom dynamics of Chattonella in the Seto Inland Sea, Japan. In: Physiological Ecology of Harmful Algal Blooms. Anderson DM, Cembella AD and Hallegraeff GM, eds. Springer-Verlag, Berlin, 95-112
  13. Itoh K and Imai I. 1987. Rapido So (Raphidophyceae). In: A guide for studies of red tide organisms. The Japan Fisheries Resources Conservation Association, ed. Shuwa, Tokyo, 122-130
  14. Iwasaki H, Kim CH and Tsuchiya M. 1990. Growth characteristics of a dinoflagellate Gymnodinium nagasakiense Takatama et Adachi. Jpn J Phycol 38, 155-161
  15. Kang IS. 2009. Optical characteristic and growth kinetics for nitrate and phosphate by the planktonic diatom Skeletonema costatum and bentic diatom Nitzschia sp.. MSc. Thesis, University of Chonnam, Yeosu, Korea
  16. Kim D-I. 2003. Physiological and ecological studies on harmful red tide dinoflagellate Cochlodinium polykrikoides (Margalef). Ph.D. Thesis, University of Kyushu, Fukuoka, Japan
  17. Kim D-I, Noh IH and Yoon YH. 2005. Chattonella spp. (Raphidophyceae), a novel species responsible for the potentially harmful algal blooms in Korean coastal waters. In: Proceeding of the Korean Society for Marine Environmental Engineering Fall Annual Meeting, 127-131
  18. Kim DY. 2009. Short-term variation of phytoplankton assemblages and environmental conditions from coastal waters in Dolsan located in the central coast of South Sea, Korea. MSc. Thesis, University of Chonnam, Yeosu, Korea
  19. Kim HC, Lee CK, Lee SG, Kim HG and Park CK. 2001. Physico-chemical factors on the growth of Cochlodinium polykrikoides and nutrient utilization. J Korean Fish Soc 34, 445-456
  20. Liu W, Au DWT, Anderson DM, Lam PKS and Wu RSS. 2007. Effects of nutrients, salinity, pH and light:dark cycle on the production of reactive oxygen species in the alga Chattonella marina. J Exp Mar Biol Ecol 346, 76-86 https://doi.org/10.1016/j.jembe.2007.03.007
  21. Lu S and Hodgkiss IJ. 2001. More raphidophyte blooms in South China waters. Harmful Algae News 22, 1-2
  22. Margalef R. 1978. Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1, 493-509 https://doi.org/10.1007/s10750-006-2815-z
  23. Marshall JA, Nichols PD, Hamilton B, Lewis RJ and Hallegraeff GM. 2003. Ichthyotoxicity of Chattonella marina (Raphidophyceae) to damselfish (Acanthochromis polycanthus): the synergistic role of reactive oxygen species and free fatty acids. Harmful Algae 2, 273-281 https://doi.org/10.1016/S1568-9883(03)00046-5
  24. Matsuda A, Nishijima T and Fukami K. 1999. Effects of nitrogenous and phosphorus nutrients on the growth of toxic dinoflagellate Alexandrium catenella. Nippon Suisan Gakkaishi 65, 847-855 https://doi.org/10.1016/S1568-9883(03)00061-1
  25. Mikhail SK. 2001. Toxic red tide species are on rise in Alexandria waters (Egypt). Harmful Algae News 22, 5
  26. Nakamura Y. 1985. Ammonium uptake kinetics and interactions between nitrate and ammonium uptake in Chattonella antiqua. J Oceanogr Soc Japan 41, 33-38 https://doi.org/10.1007/BF02109929
  27. Nakamura Y and Watanabe MM. 1983. Growth characteristice of Chattonella antiqua Part 2. Effects of nutrients on growth. J Oceanogr Soc Japan 39, 151-155 https://doi.org/10.1007/BF02070258
  28. NFRDI (National Fisheries Research & Development Institute). 2005. Harmful algal blooms in Korean coastal waters in 2005. 1-149
  29. NFRDI (National Fisheries Research & Development Institute). 2007. Harmful algal blooms in Korean coastal waters in 2006. 1-97
  30. NFRDI (National Fisheries Research & Development Institute). 2008. Harmful algal blooms in Korean coastal waters in 2007. 1-127
  31. Nishikawa T and Hori Y. 2004a. Effect of nitrogen, phosphorus and silicon on the growth of the diatom Eucampia zodiacus caused bleaching of seaweed Porphyra isolated from Harima-Nada, Seto Inland Sea, Japan. Nippon Suisan Gakkaishi 70, 31-3 https://doi.org/10.2331/suisan.70.31
  32. Nishikawa T and Hori Y 2004b. Effect of nitrogen, phosphorus and silicon on a growth of a diatom Coscinodiscus wailesii causing Porphyra bleaching isolated from Harima-Nada, Seto Inland Sea, Japan. Nippon Suisan Gakkaishi 70, 872-878 https://doi.org/10.2331/suisan.70.872
  33. Oda T, Ishimatsu A, Shimada S, Takeshita S and Muramatsu T. 1992. Oxygen-radical-mediated toxic effects of the red tide flagellate Chattonella marina on Vibrio alginolyticus. Mar Biol 112, 505-509 https://doi.org/10.1007/BF00356297
  34. Park JS, Kim HG and Lee SK. 1988. Red Tide occurrence and succession of its causative organisms in Jinhae Bay. Bull Fish Res Dev Agency 41, 1- 26
  35. Provasoil L, Shiraishi K and Lance JR. 1959. Nutritional idiosyncrasies of Artemia and Tigriopus in monoxenic culture. Ann NY Sci 77, 250-261 https://doi.org/10.1111/j.1749-6632.1959.tb36905.x
  36. Qasim SZ, Bhattathiri PM and Devassy VP. 1973. Growth kinetics and nutrient requirements of two tropical marine phytoplanktons. Mar Biol 21, 299-304 https://doi.org/10.1007/BF00381086
  37. Smayda TJ. 1997. Harmful algal blooms: Their ecoph -ysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42, 1137-1153 https://doi.org/10.4319/lo.1997.42.5_part_2.1137
  38. Subrahmanyan R. 1954. On the life-history and ecology of Hornellia marina gen. et sp. nov., (Chloromonadineae), causing green discoloration of the sea and mortality among marine organisms off the Malabar Coast. Indian J Fish 1, 182-203
  39. Tang JY, Anderson DM and Au DW. 2005, Hydrogen peroxide is not the cause of fish kills associated with Chattonella marina: cytological and physiological evidence. Aquat Toxicol 72, 351-360 https://doi.org/10.1016/j.aquatox.2005.01.007
  40. Thomas WH. 1966. Surface nitrogenous nutrients and phytoplankton in the northeastern tropical Pacific Ocean. Limnol Oceanogr 11, 393-400 https://doi.org/10.4319/lo.1966.11.3.0393
  41. Tilman D. 1982. Resource competition and community structure. Princeton University Press Princeton, 1-269
  42. Yamaguchi M. 1994. Physiological ecology of the red tide flagellate Gymnodinium nagasakiense (Dinophyceae) - Mechanism of the red tide occurrence and its prediction. Bull Nansei Nat'l Fish Res Inst 27, 251-394
  43. Yamaguchi H, Sakamoto S and Yamaguchi M. 2008. Nutrition and growth kinetics in nitrogen- and phosphorus-limited cultures of the novel red tide flagellate Chattonella ovata (Raphidophyceae). Harmful Algae 7, 26-32 https://doi.org/10.1016/j.hal.2007.05.011
  44. Yamochi S. 1984. Nutrient factors involved in controlling the growth of red tide flagellates Prorocentrum micans, Eutreptiella sp. and Chattonella marina in Osaka Bay. Bull Plankton Soc Japan 31, 97- 106
  45. Yanagi T. 1989. Physical parameters of forecasting red tide in Harima-Nada, Japan. In: Red tides: Biology, environmental science, and toxicology. Anderson DM and Nemoto T, eds. Elsevier, New York, 149-152
  46. UNESCO. 2003. IOC Taxonomic Reference List of Toxic Plankton Algae. Retrieved from hattp://www.bi.ku.dk/ioc/grop4.asp on June
  47. Vrieling EG, Koeman RPT, Nagasaki K, Ishida Y, Peperzak L, Gieskes WWC and Veenhuis M. 1995. Chattonella and Fibrocapsa (Raphidophyceae): First observation of, potentially harmful, red tide organisms in Dutch coastal waters. Netherlands J Sea Res 33, 183-191 https://doi.org/10.1016/0077-7579(95)90005-5
  48. Watanabe M, Kohata K and Kimura T. 1991. Diel vertical migration and nocturnal up-take of nutrients by Chattonella antiqua under stable stratification. Limnol Oceanogr 36, 593-602 https://doi.org/10.4319/lo.1991.36.3.0593
  49. Watanabe M, Kohata K, Kimura T, Takamatsu T, Yamaguchi S and Ioriya T. 1995. Generation of a Chattonella antiqua bloom by imposing a shallow nutricline in a mesocosm. Limnol Oceanogr 40, 1447-1460 https://doi.org/10.4319/lo.1995.40.8.1447
  50. Watanabe M, Nakamura Y, Mori S and Yamochi S. 1982. Effect of physico-chemical factors and nutrients on the growth of Heterosigma akashiwo Hada from Osaka Bay, Japan. Japan J Phycol 30, 279-288
  51. Wheeler PA and Kokkinakis SA. 1990. Ammonium recycling limits nitrate use in the oceanic subarctic Pacific. Limnol Oceanogr 35, 1267-1278 https://doi.org/10.4319/lo.1990.35.6.1267
  52. Zhang Y, Fu FX, Whereat E, Coyne KJ and Hutchins DA. 2006. Bottom-up controls on a mixed-species HAB assemblage: A comparison of sympatric Chattonella subsalsa and Heterosigma akashiwo (Raphidophyceae) isolates from the Delaware Inland Bays, USA. Harmful Algae 5, 310-320 https://doi.org/10.1016/j.hal.2005.09.001

Cited by

  1. The Effect of Environmental Factors on the Advent of Chattonella (Raphidophyceae) in Yeosu Coastal Waters, Korea, and the Effect of Nutrients on the Growth of Chattonella vol.43, pp.4, 2010, https://doi.org/10.5657/kfas.2010.43.4.362
  2. 해양적조생물제어를 위한 살조물질 Thiazolidinedione 유도체(TD49) 평가 vol.17, pp.1, 2012, https://doi.org/10.7850/jkso.2012.17.1.009