DOI QR코드

DOI QR Code

Study on Small Thruster Plume using Preconditioned Continuum Scheme and DSMC Method in Vaccum Area

희박영역에서 예조건화 연속체기법과 직접모사법을 이용한 소형 추력기 플룸 거동에 관한 연구

  • 이균호 (한국항공우주연구원 위성열/추진팀) ;
  • 이성남 (한국과학기술원 기계항공시스템 공학부)
  • Published : 2009.09.01

Abstract

To study the plume effects in the vacuum area, the Direct Simulation Monte Carlo(DSMC) method is usually adopted because the plume field usually contains the entire range of flow regime from the near-continuum in the vicinity of nozzle exit through transitional state to free molecular at far field region from the nozzle. The objective of this study is to investigate the behaviors of a small monopropellant thruster plume in the vacuum area numerically using DSMC method. To deduce accurate results efficiently, the preconditioned scheme is introduced to calculate continuum flow fields inside thruster to predict nozzle exit properties used for inlet conditions of DSMC method. By combining these two methods, the vacuum flow characteristics of plume such as strong nonequilibrium near nozzle exit, large back flow area, etc, can be investigated.

일반적으로 노즐 출구 부근에서 준연속체 상태로 방출된 추력기 플룸 유동은 노즐출구에서 멀어질수록 천이영역을 거쳐 자유분자 영역에 도달하기 때문에 진공영역에서의 추력기 플룸 영향을 연구하기 위해서는 광범위한 유동영역의 모델링이 가능한 직접모사법(DSMC)이 주로 사용된다. 본 논문에서는 진공영역에서 소형 단일추진제 추력기의 플룸 거동을 직접모사법을 이용해 수치적으로 예측하는 것이 목적이다. 정확한 결과를 효율적으로 유추하기 위해 예조건화 기법을 노즐 내부 연속체 영역의 해석에 도입하였으며, 이로부터 얻은 노즐 출구의 물성치 결과들을 직접모사법의 유입조건으로 적용하였다. 이렇게 두 기법을 결합하여 사용한 결과, 노즐 출구 부근에서 발생되는 강한 비평형성 및 넓은 후방유동 영역 등과 같이 진공영역에서 플룸이 가지는 고유의 특성들을 확인할 수 있었다.

Keywords

References

  1. Boyd, I. D. and Stark, J. P. W.,”Modeling of a Small Hydrazine ThrusterPlume in the Transition Flow Regime”, Journalof Propulsion and Power, Vol. 6, No. 2, 1990,pp. 121-126. https://doi.org/10.2514/3.23232
  2. Bird, G. A., Molecular Gas Dynamics andthe Direct Simulation of Gas Flows, Clarendon,Oxford, 1994.
  3. Wilmoth, R. G., LeBeau, G. J. andCarlson, A. B., ”DSMC Grid Methodologies forComputing Low-density, Hypersonic Flowsabout Reusable Launch Vehicles”, AIAA PaperNo. 96-1812, 1996.
  4. Sun, Q. and Boyd, I. D., ”A DirectSimulation Method for Subsonic, MicroscaleGas Flows”, Journal of Computational Physics,Vol. 179, No. 2, 2002, pp. 400-425. https://doi.org/10.1006/jcph.2002.7061
  5. Boyd, I. D., Penko, P. F., Meissner, D. L.,and DeWitt, J., ”Experimental Investigations ofLow Density Nozzle and Plume Flows ofNitrogen”, AIAA Journal, Vol. 30, No. 10, 1992,pp. 2453-2461. https://doi.org/10.2514/3.11247
  6. Chung, C. H., Kim, S. C., Stubbs, R. M.,and DeWitt, K. J., ”Low-Density Nozzle Flowby the Direct Simulation Monte Carlo andContinuum Methods”, Journal of Propulsion andPower, Vol. 11, No. 1, 1995, pp. 64-70. https://doi.org/10.2514/3.23841
  7. Vashchenkov, P. V., Kudryavtsev, A. N.,Khotyanovsky, D. V. and Ivanov, M. S.,”DSMC and Navier-Stokes Study of Backflowfor Nozzle Plumes Expanding into Vacuum”,24th International Symposium on Rarefied GasDynamics, Vol. 762, 2005, pp. 355-360. https://doi.org/10.1063/1.1941562
  8. 송봉하, 김교순, 최윤호, 이병옥, “예조건화기법을 이용한 층류 및 난류 화학반응 유동장 해석”, 대한기계학회논문집 B권, 제30권 제4호,2006, pp. 320-327 https://doi.org/10.3795/KSME-B.2006.30.4.320
  9. Merkle, C. L. and Choi, Y. H.,“Computation of Low Speed Flows with TimeMarching Procedures”, International Journal forNumerical Methods in Engineering, Vol. 25, 1985,pp. 293-311. https://doi.org/10.1002/nme.1620250203
  10. Venkateswaran, S., Weiss, J. M., Merkle, C.L. and Choi, Y. H., “Propulsion-e,lated FlowfieldsUsing the Preconditioned Navier-StokesEquations, “Propulsior 92-3437, 1992.
  11. Shuen, J. S., Chen, K. H. and Choi, Y.H., “A Time Accurate Algorithm for ChemicalNon-Equilibrium Viscous Flows at All Speeds”,AIAA Paper 92-3639, 1992.
  12. B. E. Poling, J. M. Prausnitz and J. P.O'Connell, The Properties of Gases andLiquids, McGraw-Hill, 5th Edition, 2001.
  13. Zehe, M. J., Gordon, S. and McBride, B.J., “CAP : A Computer Code for GeneratingTabular Thermodynamic Functions from NASALewis Coefficient”, NASA/TP-2001-210959, 2002.
  14. 박재헌, 강신재, 김정수, 백승욱, 유명종,“인공위성 추력기 플룸의 DSMC 해석”, 한국항공우주학회지, 제29권 제8호, 2001, pp. 111-118
  15. Kewley, D. J., “Predictions of the ExitConditions, including Species Concentrationsand the Ratio of, Specific Heats of HydrazineDecomposition Thrusters”, DFVLR, InternalRept. IB 222-85 A05, Gottingen, Germany, 1985.
  16. Legge, H., and Dettleff, G., “PitotPressure and Heat-Transfer Measurements inHydrazine Thruster Plumes”, Journal ofSpacecraft and Rockets, Vol. 23, 1986, pp.357-362. https://doi.org/10.2514/3.25812
  17. Cuffel, R. F., Back, L. H. and Massier, P.F., ”Transonic Flowfield in a SupersonicNozzle with Small Throat Radius ofCurvature”, AIAA Journal, Vol. 7, 1969, pp.1364-1366. https://doi.org/10.2514/3.5349
  18. Rothe, D. E., ”Electron-Bean Studies ofViscous Flow in a Supersonic Nozzle”, AIAAJournal, Vol. 9, pp. 804-810, 1971.
  19. Hamel, B. B., Maguire, B. L., and Muntz,E. P., ”Some Characteristics of Exhaust PlumeRarefaction”, AIAA Journal, Vol. 8, 1970, pp.1651-1658. https://doi.org/10.2514/3.5960

Cited by

  1. Prediction of Parabolic Antenna Satellite Drag Force in Low Earth Orbit using Direct Simulation Monte Carlo Method vol.42, pp.7, 2014, https://doi.org/10.5139/JKSAS.2014.42.7.616