DOI QR코드

DOI QR Code

Numerical Study of the effect of pintle shape on the thrust level

핀틀 형상이 추력 크기에 미치는 영향에 대한 수치해석적 연구

  • 김중근 (국방과학연구소 1기술본부 6부) ;
  • 박종호 (충남대학교 BK21 메카트로닉스사업단)
  • Published : 2009.05.01

Abstract

The effect of pintle shape on the thrust level of pintle-nozzle Solid Rocket Motor(PNSRM) was studied numerically using the Spalart-Allmaras turbulent model of Fluent. Mass flow rate of PNSRM was always less than theoretical value and the extent of decrease in mass flow rate grew in the large pintle because of increase in the relative boundary layer thickness between pintle body and nozzle wall. The bigger pintle size was, the more thrust of pintle tip pressure was obtained. Meanwhile the more thrust of nozzle and chamber pressure decreased. Hence, total thrust of big pintle was less than a small pintle under same throat area condition. Specific impulse was relatively flat for all pintle shape.

본 논문에서는 Fluent의 Spalart-Allmaras 난류모델을 적용하여 연소실 내부에 설치된 핀틀 형상이 핀틀 추진기관 추력 크기에 미치는 영향을 수치해석으로 분석하였다. 핀틀이 존재하면 노즐목을 지나는 질량 유량율은 이론적으로 예측된 값 보다 항상 작았으며, 핀틀 직경이 커질수록 노즐목에서 경계층 두께가 차지하는 비율이 증가되어 노즐목의 질량 유량율이 더욱 감소하였다. 핀틀 직경이 커질수록 핀틀 팁에 나타나는 재순환 영역의 압력에 의한 추력은 증가하지만 노즐 및 연소실 압력에 의한 추력은 감소하여 총 추력은 핀틀 직경이 작은 것 보다 감소하였다. 핀틀 추진기관의 비추력은 큰 차이가 없었다.

Keywords

References

  1. Charles T. Levinsky and Gerald F. Kobalter, "Feasibility demonstration of a singlechamber controllable solid rocket motor", Air Force Rocket Propulsion Lab., AFRPL-TR-67-300, 1967.
  2. M.J. Ostrander, J.L. Bergmans and M.E. Thomas, "Pintle Motor Challenges for Tactical Missiles", AIAA 2000-3310, 2000.
  3. Christia A. Davis and Amy B. Gerards, "Variable thrust solid propulsion control using Labview", AIAA-2003-5341, 2003.
  4. S.Burroughs, "Status of army pintle technology for controllable thrust propulsion", AIAA-2001-3598, 2001.
  5. John Napior and Victoria Garmy, "Controllable Solid Propulsion For Launch Vehicle And Spacecraft Application", AIAA 2006-905, 2006.
  6. Francis R. Hama, "Experimental studies on the lip shock", AIAA67-29, 1967.
  7. Delery, J., and Marvin. J. G., "Shock-wave boundary layer interactions", AGARD No. 280, ISBN 92-835-1519-6, 1986.
  8. Barry L. Reeves, and Lester Lees,"Theory of laminar near wake of blunt bodies in hypersonic flow", AIAA journal, Vol. 3, No. 11 , pp. 2061-2074, 1965. https://doi.org/10.2514/3.3316
  9. 김중근, 이지형, 장홍빈, “핀틀 공압 시험 결과 보고”, 국방과학연구소 보고서, ADDR-421-080682, 2008.
  10. George P. Sutton, “Rocket Propulsion Element : An introduction to the engineering of Rockets”, John Wiley & Sons, Inc., pp. 365-415, 1992.
  11. Michel A. Saad, Compressible fluid flow, Prentice-Hall, Inc., pp. 83-131, 1985.
  12. 노오현, “점성유동이론”, 박영사, pp. 201-240, 2006.
  13. Dean R. Chapman, Donald M. Keuhn and Howard K. Larson,"Investigation odseparated flows in supersonic and subsonic streams with emphasis on the effect of transition", NACA-3869, 1957.
  14. Jan Ostlund, " Flow processing in rocket engine nozzle with focus on flow separation and side-loads", TRITA-MEK, Technical Report 2002:09, ISSN 0348-467X, 2002.

Cited by

  1. Three-dimensional Effects of an Axi-symmetric Pintle Nozzle vol.22, pp.6, 2018, https://doi.org/10.6108/KSPE.2018.22.6.047